期刊文献+

PPy含量对Fe_2O_3/PPy锂离子电池负极材料性能的影响 被引量:1

Influences of PPy content of Fe_2O_3/PPy on properties of anode in Li-ion batteries
下载PDF
导出
摘要 为研究聚吡咯(PPy)含量对Fe_2O_3/PPy负极材料电化学性能的影响,以FeCl_2·4H_2O为Fe源,采用水热法合成Fe_2O_3纳米片,用原位聚合法合成不同PPy含量的Fe_2O_3/PPy复合材料,并通过X-射线衍射和扫描电子显微镜对合成的材料进行表征;将材料组装成扣式电池,采用恒流充放电、循环伏安法和交流阻抗测试进行电化学性能表征.结果表明:PPy的加入改善了Fe_2O_3的循环稳定性,其中PPy质量分数为5.0%的Fe_2O_3/5.0%PPy负极材料的循环性能最好,在200 mA/g的电流密度下,首次放电比容量为1 342.3 mA·h/g,首次库仑效率达到75.1%;经过100次循环,其放电比容量保持为487.4 mA·h/g,高于Fe_2O_3/2.5%PPy、Fe_2O_3/7.5%PPy和Fe_2O_3的放电比容量. In order to study the effect of polypyrrole (PPy) content on the electrochemical properties of Fe2O3 /PPy anode electrode, Fe2O3 nanosheets were synthesized by hydrothermal method using FeCl2·4H2O as Fe source, and then Fe2O3 /PPy composites with different PPy content were synthesized by in situ polymerization. The synthesized materials were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The electrochemical characteristics of assembled coin-type cells were evaluated by galvanostatic charge-discharge, cyclic voltammetry and electrochemical impedance spectra. The results show that PPy improves the cycle stability of Fe2O3 and Fe2O3 /5.0% PPy has the best cyclic performance,which exhibites an initial discharge capacity of 1 342.3 mA·h/g at a current density of 200 mA/g and the first Coulomb efficiency is 75.1%. In the following cycles the specific capacity of Fe2O3 /PPy is 487.4 mA·h/g after 100 cycles, which is higher than that of Fe2O3 /2.5% PPy、Fe2O3 /7.5% PPy and pure Fe2O3.
作者 何声太 吴垚震 高海 HE Sheng-tai;WU Yao-zhen;GAO Hai(Tianjin Key Laboratory of Advanced Fibers and Energy Storage,Tianjin Polytechnic University,Tianjin 300387,China)
出处 《天津工业大学学报》 CAS 北大核心 2018年第6期55-59,共5页 Journal of Tiangong University
基金 国家重大科学研究计划资助项目(2012CB933301)
关键词 Fe2O3/PPy 负极材料 锂离子电池 电化学性能 Fe2O3/PPy anode electrode Li-ion battery electrochemical property
  • 相关文献

参考文献3

二级参考文献34

  • 1Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
  • 2Zhu X, Zhu Y, Murali S, et al. Nanostructured reduced graphene oxide/Fe203 composite as a high-performance anode material for lithium ion batteries[J]. ACS Nano, 2011, 5(4): 3333-3338.
  • 3Buqa H,Goers D, Holzapfel M, et al. High rate capability of graphite negative electrodes for lithium-ion batteries [J]. Journal of The Electrochemical Society, 2005, 152 (2): A474-A481.
  • 4Aricd A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature materials, 2005,4(5): 366-377.
  • 5Jang B, Park M, Chae O B,et al. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes [J]. Journal of the American Chemical Society, 2012, 134(36): 15010-15015.
  • 6Kwon K A,Lim H S, Sun Y K, et al. a -Fe203 submicron spheres with hollow and macroporous structures as high-performance anode materials for lithium ion batteries [J]. The Journal of Physical Chemistry C, 2014,118(6): 2897-2907.
  • 7Zhao B, Liu R, Cai X, et al. Nanorod-like Fe203/graphene composite as a high-performance anode material for lithium ion batteries [J]. Journal of Applied Electrochemistry2014, 44(1): 53-60.
  • 8Luo J, Liu J, Zeng Z,et al. Three-dimensional graphene foam supported Fe304 lithium battery anodes with long cycle life and high rate capability[J]. Nano letters, 2013, 13(12): 6136-6143.
  • 9He C, Wu S,Zhao N,et al. Carbon-encapsulated Fe304 nanoparticles as a high-rate lithium ion battery anode ma-terialfJ]. ACS Nano, 2013,7(5): 4459-4469.
  • 10Y Li, Q Zhang, Zhu J, et al. An extremely stable Mn02 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2014,2(9): 3163-3168.

共引文献8

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部