期刊文献+

有限元基函数对摄动边界层问题的分层网格自适应处理 被引量:1

Adapted Simulation of Finite Element Basis Functions on Graded Mesh for the Perturbed Boundary Layers Problem
下载PDF
导出
摘要 针对含小参数的奇异摄动微分方程,应用有限元基函数生成有限维子空间处理变分形式,再依据网格参数自动生成分层网格,得到随机剖分数的自适应网格,较之经典网格能更好地捕捉边界层。使用该方法的数值实验非常好地逼近了真解的边界层,得到了不依赖于摄动参数大小,且一致收敛的高精度有限元计算结果。 For a singularly perturbed differential equation with a small parameter,finite dimensional subspace for the variational form is built with finite element basis functions,and the graded mesh is constructed by a mesh generator.Then an adaptive random partitioned mesh is obtained,which is better to resolve the boundary layer than the classic mesh.This strategy performs perfectly to approximate to the boundary layer of the exact solution in the numerical experiment.Highly accurate finite element result is acquired and it is independent to the perturbed parameter and uniformly convergent.
作者 孙美玲 SUN Mei-ling(Department of Public and Basic Courses,Nantong Vocational University,Nantong 226007,China)
出处 《南通职业大学学报》 2018年第4期62-66,共5页 Journal of Nantong Vocational University
基金 国家自然科学基金项目(11301462) 南通职业大学自然科学研究项目(1512105)
关键词 奇异摄动问题 有限元计算 分层网格 自适应 一致收敛 singularly perturbed problem finite element computation graded mesh adaption uniform convergence
  • 相关文献

参考文献3

二级参考文献33

  • 1ROOS H G, STYNES M,TOBISKA L. Robust numerical methods for singularly perturbed differential equations: convection -- diffusion-- reaction and flow probtems[M]. Berlin : Springer, 2008: 1-598.
  • 2MELENK J M. hp--finite element methods for singular perturbations[M]. Berlin: Springer, 2002:1-325.
  • 3MORTON K W. Numerical solution of convection--diffusion problems[M] London: Chapman and Hall, 1996:1-60.
  • 4ZHU Peng, XIE Zi-qing,ZHOU Shu--zi. A uniformly convergent continuous--discontinuous Galerkin method for singularly perturbed problems of convection--diffusion type[J]. Appl. Math. Comp. , 2011(217):4782-4790.
  • 5LINSS T. Analysis of a Galerkin finite element method on a Bakhvalov--Shishkin mesh for a linear convection diffusion probleml[J].IMA journal of numerical analysis, 2000,20 (4) : 621 - 632.
  • 6LINSS T. Layer--adapted meshes for convection--diffusion problems[J]. Computer Methods in Applied Mechanics and Engineering, 2003,192(9) : 1061- 1105.
  • 7STYNES M, OtRiordan E. A uniformly convergent Galerkin method on a Shishkin mesh for a convection--diffusion problem [J]. Journal of mathematical analysis and applications, 1997,214(1):36-54.
  • 8LINSS T. An upwind difference scheme on a novel Shishkin--type mesh for a linear convection diffusion problem[J]. Journal of computational and applied mathematics, 1999,110(1) : 93- 104.
  • 9CIARLET P G. The finite element method for elliptic problems[M]. Amsterdam: North--Holland,1978:1-551.
  • 10Hughes T J, Brooks A N. A Multidimensional Upwind Scheme With No Crosswind Diffusion[J]. Finite Element Methods for Convection dominated Flows: ed.By T. J. Hughes, ASME, 1979, 34: 19-35.

共引文献6

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部