期刊文献+

基于案例推理增强学习的磨矿过程设定值优化 被引量:10

Case-based reasoning and reinforcement learning integrated set-point optimization method for grinding process
下载PDF
导出
摘要 磨矿粒度和循环负荷是磨矿过程产品质量与生产效率的关键运行指标,相对于底层控制偏差,回路设定值对其影响要严重的多.然而,磨矿过程受矿石成分与性质、设备状态等变化因素影响,运行工况动态时变,难以建立模型,因此难以通过传统的模型方法优化回路设定值.本文将增强学习与案例推理相结合,提出一种数据驱动的磨矿过程设定值优化方法.首先根据当前运行工况,采用基于Prey-Predator优化的案例推理方法,决策出可行的基于Elman神经网络的Q函数网络模型;然后利用实际运行数据,在增强学习的框架下,根据Q函数网络模型优化回路设定值.在基于METSIM的磨矿流程模拟系统上进行实验研究,结果表明所提方法可根据工况变化在线优化回路设定值,实现磨矿运行指标的优化控制. In grinding processes,particle size and circulating load are two key operation indexes for product quality and production efficiency.With respect to the economic performance,the basic loop controller performance is most probably not as important as the right selection of the loop set-points.The industrial grinding processes,however,are affected by the factors such as composition and properties of ore,the equipment status and so on.When the large fluctuation of the factors occurs,the operation will be time-varying,thereby making the process modeling very difficult.Therefore,it is hard to employ the traditional model-based methods to optimize the loop set-points.In this paper,a data-driven optimalsetting control method is proposed by using case-based reasoning(CBR)and reinforcement learning(RL)technologies.The method first employs a Prey-Predator optimization-based CBR method to determine a feasible Elman neural networkbased Q function model in accordance with current operation condition.Then,under the RL framework,the Q function model is adopted to optimize the loop set-points according to the operation data.Experiments studies are carried out in a METSIM-based grinding simulation system.Results show that the proposed method can realize the optimization control of the grinding operation indexes by optimizing the loop set-points online according to the varied operation conditions.
作者 代伟 王献伟 路兴龙 柴天佑 DAI Wei;WANG Xian-wei;LU Xing-long;CHAI Tian-you(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou Jiangsu 221116,China;State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang Liaoning 110819,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第1期53-64,共12页 Control Theory & Applications
基金 国家自然科学基金项目(61603393 61741318) 江苏省自然科学基金项目(BK20160275) 中国博士后科学基金项目(2015M581885 2018T110571) 东北大学流程工业综合自动化国家重点实验室开放课题(PAL–N201706)资助~~
关键词 案例推理 增强学习 神经网络 设定值优化 磨矿过程 case-based reasoning reinforcement learning neural network set-point optimization grinding process
  • 相关文献

参考文献4

二级参考文献73

  • 1楚云飞,徐文立,王峻,万维汉.基于切换控制的均匀液位控制[J].清华大学学报(自然科学版),2005,45(1):107-110. 被引量:9
  • 2高阳,胡景凯,王本年,王冬黎.基于CMAC网络强化学习的电梯群控调度[J].电子学报,2007,35(2):362-365. 被引量:13
  • 3郭锐,吴敏,彭军,彭姣,曹卫华.一种新的多智能体Q学习算法[J].自动化学报,2007,33(4):367-372. 被引量:13
  • 4Suykens J A K, Vandewale J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293-300.
  • 5Watkins C J C H, Dayan P. Q-learning. Machine Learning, 1992, 8(3-4): 279-292.
  • 6Kaelbling L P, Littman M L, Moore A W. Reinforcement learning: a survey. Journal of Artificial Intelligence Research, 1996, 4(2): 237-285.
  • 7Kyriakos M, Dimitris P. Continuous nearest neighbor queries over sliding windows. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(6): 789-803.
  • 8Wang X S, Tian X L, Cheng Y H. Value approximation with least squares support vector machine in reinforcement learning system. Journal of Computational and Theoretical Nanoscience, 2007, 4(7-8): 1290-1294.
  • 9Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press, 1998.
  • 10Conn K, Peters R A. Reinforcement learning with a supervisor for a mobile robot in a real-world environment. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation. Piscataway, USA: IEEE, 2007. 73-78.

共引文献70

同被引文献120

引证文献10

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部