期刊文献+

改进协方差矩阵的智能车视觉目标跟踪方法 被引量:2

Vision Target Tracking Method of Intelligent Vehicle Based on Improved Covariance Matrices
下载PDF
导出
摘要 智能车辆视觉目标具有非线性、噪声分布非高斯性的典型特点,现有算法难以实时估计目标的状态。针对识别物体复杂且多变,很难用完全的特征来描述待识别目标及其背景的不断变化,提出了一种用于融合颜色特征及SURF(Speed-Up Robust Features)特征的协方差矩阵来改进粒子滤波算法,从而提升视觉目标跟踪的实时性,满足智能车辆的要求。首先,对采集的图像进行预处理来获取感兴趣区域。接着,通过融合颜色特征及SURF特征构造范围感兴趣区域(Region Of Interest,ROI)的目标特征协方差矩阵,建立目标状态预测模型及状态观测模型,用于改进粒子滤波算法粒子重采样过程,实现对目标的精确跟踪。最后,将该方法与Mean-shift算法和颜色属性(CN)算法进行对比。实验结果表明,在智能车视觉跟踪过程中对光环境瞬时变化、目标物体存在短时遮挡以及目标物体姿态改变时,该算法在满足智能车辆对实时性要求的前提下,有效提升算法的精确度及鲁棒性。 There are the salient features of target nonlinearity and non-Gauss distribution of noise with the vision target recognition method of intelligent vehicle,so it's hard for existing algorithms to estimate target state in real time.Due to the complexity and changeability of objects needed to be recognized,it's almost impossible to adopt complete features to describe the target and its dynamic background.A covariance matrix fused with color features and speed-up robust features is proposed in this paper,which is used for particle filtering algorithm,thus achieving the accurate tracking of target.Firstly,the collected image is pretreated to obtain the region of interest.Secondly,a target feature covariance matrix in the ROI is constructed by fusing color features and speed-up robust features.Then,target state prediction model and state observation model used for particle resampling process in improved particle filter algorithm are built,which can implement accurate tracking of targets.Finally,the method is compared with traditional particle filter method characterized by single color features and speed-up robust features.Test results show that,for vision target recognition and tracking of intelligent vehicle when light environment is instantaneous changed,target object has short duration occlusion or target object changes attitude,the accuracy and robustness of the algorithm are effectively improved with the premise of meeting real-time requirement.
作者 刘红星 胡广地 朱晓媛 李进龙 LIU Hongxing;HU Guangdi;ZHU Xiaoyuan;LI Jinlong(Automotive Research Institute,Southwest Jiaotong University,Chengdu 610031,China;School of Electrical Engineering,Southwest Jiaotong University,Chengdu 610031,China;School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 610031,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第3期171-178,共8页 Computer Engineering and Applications
基金 四川省科技支撑项目(No.2016GZ0026)
关键词 视觉目标追踪 粒子滤波算法 协方差矩阵 特征融合 target recognition and tracking particle filtering algorithm covariance matrices feature fusion
  • 相关文献

参考文献10

二级参考文献92

  • 1刘健庄,谢维信.高效的彩色图像塔形模糊聚类分割方法[J].西安电子科技大学学报,1993,20(1):40-46. 被引量:5
  • 2刘重庆,程华.分割彩色图像的一种有效聚类方法[J].模式识别与人工智能,1995,8(A01):133-138. 被引量:7
  • 3辛云宏,王保平,杨万海.基于序贯重要采样算法的被动单站机动目标跟踪[J].西安电子科技大学学报,2005,32(5):820-824. 被引量:4
  • 4侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 5万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 6Comaniciu D, Ramesh V,Meer P. Real-time Tracking of Non-rigid Objects Using Mean-shift [C]//Proceeding of the International Conference on Computer Vision and Pattern Recognition. Hilton Head, SC, USA: IEEE Press, 2000: 142-149.
  • 7Porikli F. Integral Histogram: A Fast Way to Extract Histograms in Cartesian Spaces [C]//Proceeding of the International Conference on Computer Vision and Pattern Recognition. San Diego, CA: IEEE Press, Volume 1. 2005: 829-836.
  • 8Viola P, Jones M. Rapid Object Detection Using Aboosted Cascade of Simple Features [C]//Proceeding of the International Conference on Computer Vision and Pattern Recognition. Kauai, HI: IEEE Press, Volume 1,2001: 511- 518.
  • 9Tuzel O, Porikli F, Meer P. Region Covariance: A Fast Descriptor for Detection and Classification [C]// Proceeding of the 9th European Conference on Computer Vision. Graz, Austria:IEEE Press, volume 2, 2006: 589-600.
  • 10Tuzel O, Porikli F, Meer P. Covariance Tracking using Model Update Based on Means on Riemannian Manifolds [C]//Proceeding of the International Conference on Computer Vision and Pattern Recognition. New York, NY: IEEE Press, volume 1, 2006: 728- 735.

共引文献684

同被引文献25

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部