期刊文献+

实体语义关系分类及应用研究

Research on Entity Semantic Relation Classification and Application
下载PDF
导出
摘要 [目的/意义]实体语义关系分类是信息抽取重要任务之一,将非结构化文本转化成结构化知识,是构建领域本体、知识图谱、开发问答系统、信息检索系统的基础工作。[方法/过程]本文详细梳理了实体语义关系分类的发展历程,从技术方法、应用领域两方面回顾和总结了近5年国内外的最新研究成果,并指出了研究的不足及未来的研究方向。[结果/结论]热门的深度学习方法抛弃了传统浅层机器学习方法繁琐的特征工程,自动学习文本特征,实验发现,在神经网络模型中融入词法、句法特征、引入注意力机制能有效提升关系分类性能。 [Purpose/Significance]Entity semantic relation classification is one of the important tasks of information extraction,translate unstructured text into structured knowledge,the basic work of constructing domain ontology,knowledge graph,developing question answering system and information retrieval.[Method/Process]This paper sorted the development of entity semantic relation classification in detail,reviewed and summarized the latest research results in recent five years from technical method and application,finally pointed out the shortcomings of the research on entity semantic relation classification and the future research direction.[Result/Conclusion]Deep learning abandoned traditional machine learning methods with cumbersome feature engineering,automatic learning text features,the experiments showed that incorporating lexical and syntactic features into the neural network and introducing attention mechanism could effectively improve the performance of relation classification.
作者 李枫林 柯佳 Li Fenglin;Ke Jia(Department of Information Management,Wuhan University,Wuhan 430072,China)
出处 《现代情报》 CSSCI 2019年第2期47-56,84,共11页 Journal of Modern Information
关键词 实体语义关系 关系分类 神经网络 深度学习 entity semantic relation relation classification neural network deep learning
  • 相关文献

参考文献7

二级参考文献26

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2梁晗,陈群秀,吴平博.基于事件框架的信息抽取系统[J].中文信息学报,2006,20(2):40-46. 被引量:38
  • 3董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 4甘甜,莫倩,张华平. 基于搜索引擎的人物社会关系抽取研究[C] //第五届全国信息检索学术会议论文集. 2009.
  • 5赵妍妍,秦兵,车万翔,刘挺.中文事件抽取技术研究[J].中文信息学报,2008,22(1):3-8. 被引量:106
  • 6Horrocks I, Sattler U. A tableau decision procedure for SHOIQ [ J ]. Journal of Automated Reasoning,2007,39(3) :249-276.
  • 7Xu Feiyu, Uszkoreit H, Li Hong. A seed-driven bottom-up machine learning framework for extracting relations of various complexity [ C ]// Proc of the 45th Annual Meeting of the Association of Computational Linguistics. 2007 : 584- 591.
  • 8Xu Feiyu. Bootstrapping relation extraction from semantic seeds [ D ]. Saarbcken, Homburg: Saarlancl Utdversity ,2008.
  • 9Xu Fciyu, Uszkoreit H, Krause S, et al. Boosting relation extraction with hmited closed-world knowledge [ C ]//Proc of the 23rd Intema-tional Conference on Computational Linguistics. 2010:1354-1362.
  • 10Carlson A, Betteridge J, Wang R C, et al. Coupled semi-supervised learning for information extraction[ C]//Proc of the 3rd ACM Interna- tional Conference on Web Search and Data Mining. New York : ACM Press,2010 : 101-110.

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部