摘要
在MnSO_4-(NH_4)_2SO_4溶液中,以铝板为阴极电沉积金属锰,分别研究电流密度、电解液成分、温度等因素对阴极电流效率、能耗和阴极产物的影响。结果表明:在含Mn^(2+)溶液浓度为30 g/L、(NH_4)_2SO_4浓度为130 g/L、SeO_2浓度为0.04g/L、初始pH值为7.0、电流密度为400 A/m^2、电解温度为35℃时,铝阴极的阴极电流效率为85.8%,能耗为4870.9 kW?h/t,得到的金属锰纯度高于99.5%,晶型为α-Mn。与传统不锈钢阴极(0Cr19Ni9)对比,Mn^(2+)在铝阴极表面的起始沉积电位与在不锈钢阴极表面的相同,但在电沉积初期可以抑制H_2的析出;铝阴极可加速Mn^(2+)的电沉积,增加阴极电流效率,降低直流电耗;同时,铝阴极可以抑制SeO_3^(2-)的还原,减小添加剂SeO_2的消耗量,提高阴极锰的纯度。因此,金属铝具备替代不锈钢作为电沉积金属锰的潜力。
Aluminum was adopted as cathodic material for manganese electrodeposition from the MnSO4-(NH4)2SO4 solution.The influences of the current density,electrolyte composition and temperature were studied on the cathodic current efficiency,energy consumption and cathodic products.The results show that,the cathodic current efficiency and the energy consumption can reach to 85.8%and 4870.9 kW·h/t,under the following conditions:Mn^2+concentration of 30 g/L,(NH4)2SO4 concentration of 130 g/L,SeO2 concentration of 0.04 g/L,temperature of 35℃,pH of 7.0 and cathode current density of 400 A/m^2.The purity of product can achieve more than 99.5%and the crystal form isα-Mn.Compared with traditional stainless steel(0Cr19Ni9),the onset potential of manganese electrodeposition on aluminum cathode is not changed,while the hydrogen evolution is suppressed at initial period of electrodeposition.Aluminum cathode can accelerate the discharge rate of Mn^2+and improve the cathodic current efficiency,and then decrease the energy consumption.The reduction of SeO3^2-on aluminum cathode is weakened,which can reduce the consumption of SeO2 and improve the purity of product.This study indicates that aluminum has the potential to be candidate of stainless steel for manganese electrodeposition.
作者
杨凡
蒋良兴
于枭影
杨健
赖延清
吕晓军
李劼
YANG Fan;JIANG Liang-xing;YU Xiao-ying;YANG Jian;LAI Yan-qing;Lü Xiao-jun;LI Jie(School of Metallurgy and Environment,Central South University,Changsha 410083,China)
出处
《中国有色金属学报》
EI
CAS
CSCD
北大核心
2018年第12期2568-2579,共12页
The Chinese Journal of Nonferrous Metals
基金
国家自然科学基金资助项目(51374240)~~
关键词
锰电解
铝阴极
电流效率
能耗
SeO2
manganese electrodeposition
aluminum cathode
current efficiency
energy consumption
SeO2