期刊文献+

SBR反应器中C_(60)对活性污泥的影响

Effects of C_(60) on the Activated Sludge Process in SBR Reactors
下载PDF
导出
摘要 以序批式活性污泥反应器(SBR)为主体,研究了富勒烯C_(60)水悬液的短期处理对活性污泥生化特性和微生物种群结构的影响.加入C_(60)水悬液后污泥耗氧速率变化经过迅速上升、短暂平稳、急速下降、缓慢下降、稳定五个阶段,处理6 h后C_(60)水悬液对污泥耗氧速率无显著影响;试验组与对照组污泥对氨氮的去除率均为95. 5%,对总有机碳的去除率分别为67. 7%和66. 7%; C_(60)水悬液短期内对活性污泥氨氮去除、总有机碳降解均无显著影响,PCR-DGGE结果表明,C_(60)水悬液的加入在短期内没有引起活性污泥微生物种群结构的改变. The effects of short-term treatment of fullerene C60 aqueous suspension on biochemical characteristics and microbial population structure of activated sludge were studied in a Sequendng Batch Reacter (SBR). After adding C60 water suspension, the change of oxygen consumption rate of sludge went through five stages: rapid rise, short-term stablility, rapid decline, slow decline and stability. No significant effect of C 60 water suspension on oxygen consumption rate of sludge was observed after 6 hours of treatment. The removal rate of ammonia nitrogen in the test group and the control group was 95.5%, and the removal rate of total organic carbon was 67.7% and 66.7%, respectively. C60 aqueous suspension had no significant effect on ammonia nitrogen removal and total organic carbon degradation of activated sludge in the short term. PCR-DGGE results showed that the addition of C60 aqueous suspension did not cause the change of microbial population structure of activated sludge in a short period of time.
作者 郭洪霞 GUO Hongxia(Dean’s Office, Anhui Sanlian University, Hefei 230601, China)
出处 《许昌学院学报》 CAS 2018年第12期48-53,共6页 Journal of Xuchang University
基金 安徽三联学院校级科研基金重点课题(PTZD2017011)
关键词 C60 水悬液 活性污泥 OUR TOC 影响 C60 aqueous suspension activated sludge OUR TOC effects
  • 相关文献

参考文献2

二级参考文献92

  • 1易甫,吴红,贾国良,郭文怡,吕安林,王海昌,张荣庆.纳米粒子介导血管内皮生长因子基因治疗兔心肌缺血的疗效[J].中华医学杂志,2006,86(8):510-514. 被引量:6
  • 2费文雷,陈家祺,钟诗龙,刘永民,庞志清,王铮,袁进,叶成添.FK506及其纳米粒的房水药代动力学的实验研究[J].中华眼科杂志,2006,42(4):305-308. 被引量:4
  • 3杨国华,陈孝平,黄志勇,孙振纲,关键,胡道予.纳米羟基磷灰石碘油混合物栓塞治疗兔VX2肝肿瘤[J].中华实验外科杂志,2007,24(3):288-289. 被引量:9
  • 4AUFFAN M. , ROSE J. , WIESNER M. R. , et al. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environmental Pollution, 2009, 157(4): 1127-1133.
  • 5HANDY R. D., OWEN R., VALSAMI-JONES E. The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 2008, 17(5) : 315-325.
  • 6张玉绣,张大伟,金政伟.纳米材料的制备方法及其应用.北京:中国纺织工业出版社,2010:3-7.
  • 7GOTTSCHALK F. , SONDERER T. , SCHOLZ R. W. , et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science & Technology, 2009, 43(24) : 9216-9222.
  • 8SAVOLAINEN K., ALENIUS H., NORPPA H., et al. Risk assessment of engineered nanomaterials and nanotechnologies : A review. Toxicology, 2010, 269 (2/3) : 92-104.
  • 9DOMINGOS R. F. , BAALOUSHA M. A. , JU-NAM Y. , et al. Characterizing manufactured nanoparticles in the environment: Multimethod determination of particle sizes. Environmental Science & Technology, 2009, 43 (19):7277-7284.
  • 10BOTTERO J. Y. , WIESNER M. R. Considerations in evaluating the physicochemical properties and transformations of inorganic nanoparticles in water. Nanomedicine, 2010, 5(6) : 1009-1014.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部