期刊文献+

基于特征模理论的低剖面MIMO立方体天线 被引量:2

Low-profile MIMO cube antenna based on characteristic mode theory
下载PDF
导出
摘要 基于特征模理论,给出了一种适用于室内环境的16端口多输入多输出(MIMO)立方体天线设计.首先利用特征模理论在对一个矩形金属片进行模式分析的基础上,同时激励金属片的不同模式,设计了一款工作于5. 150~5. 875GHz的高隔离度的4端口MIMO天线单元,并引入人工磁导体(AMC)表面代替原天线的地板,大大降低了天线的剖面.进一步地,围绕立方体环绕一周组成4×4端口的MIMO立方体天线,在较小的空间内实现了天线的多端口与多极化.仿真和测试结果表明:天线在5. 150~5. 875 GHz频段内端口反射系数S_(ii)<-10 dB,端口间隔离度|S_(ij)|> 20 dB. Based on the characteristic mode theory,a 16-port multiple-input multiple-output(MIMO)cube antenna design for an indoor environment is presented.First,a high-isolation 4-port MIMO antenna unit operating at 5.150-5.875 GHz is designed by exciting different modes of a rectangular plate simultaneously,based on a modal analysis using the characteristic mode theory.An artificial magnetic conductor(AMC)surface is introduced to replace the reflector of the original antenna,which greatly reduces the profile of the antenna;it is also used to surround the antenna to form a 16-port(4×4)MIMO cube antenna.This antenna fulfils the multi-port and multi-polarization requirement within a small space.The simulation and experimental results show that the antenna operates with a port reflection coefficient Sii<-10 dB and port isolation|Sij|>20 dB in the 5.150-5.875 GHz band.
作者 于琪 陈益凯 杨仕文 YU Qi;CHEN Yikai;YANG Shiwen(School of Electronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 611731)
出处 《南京信息工程大学学报(自然科学版)》 CAS 2019年第1期40-46,共7页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家自然科学基金(61671127 61631006 61721001)
关键词 特征模理论 MIMO立方体天线 人工磁导体 低剖面 characteristic mode theory MIMO cube antenna artificial magnetic conductor low-profile
  • 相关文献

参考文献3

二级参考文献15

  • 1IEEE 802.11 Partll,Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications [S].
  • 2IEEE 802.11g,Further High-Speed Physical Layer Extension in the 2.4 GHz Band [S].
  • 3Yablonovitch E.Inhibited spontaneous emission in solid-state physics and electronics,Phys Rev Lett,1987,58(20):2059~2062
  • 4Smith D R,Schultz S.A new type of waveguide structures with photonic band structures.IEEE MTT-S Digest.1996
  • 5Radisic V,Qian Y,Coccioli R,et al.Novel 2-D photonic bandgap structure for microstrip lines.IEEE Microwave Guided Wave Lett,1998,8(2):69~71
  • 6Yun Tae-Yeoul,Chang Kai.Uniplanar one-dimensional photonic-bandgap structures and resonators.IEEE Trans MTT,2001,49(3):549~553[5] Matthew M Beaky,John B Burk,Henry O Everitt,et al.Two-dimentional photonic crystals fabry-perot resonators with lossy dielectrics.IEEE Trans MTT.1999,47(11):2085~2090
  • 7Yasushi Horii,Makoto Tsutsumi.Harmonic control by photonic bandgap on microstrip patch antenna.IEEE Microwave Guided Wave Lett,1999,9(1):13~15
  • 8Radisic V,Qian Y,Itoh T.Broad-band power amplifier using dielectric photonic bandgap structure.IEEE Microwave Guided Wave Lett,1998,8(1):13~14
  • 9Radisic V,Qian Y,Itoh T.Broad-band power amplifier using dielectric photonic bandgap structure.IEEE Microwave Guided Wave Lett,1998,8(1):13~14
  • 10Marc Thevenot,Cyril Cheype,Alain Reineix,et al.Directive photonic-bandgap antennas.IEEE Trans MTT,1999,47(11):2115~2122

共引文献24

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部