期刊文献+

基于VGG-M网络模型的前方车辆跟踪 被引量:5

Front Vehicle Tracking Based on VGG-M Network Model
下载PDF
导出
摘要 针对前方运动车辆复杂场景下的跟踪精度较低的问题,文中将庞大的VGG-M网络模型应用到实时跟踪中,并结合在线观测模型,实现对前方车辆稳定精准的跟踪。通过改进样本生成方案,优化网络训练集,提高了网络训练效率。采用自适应更新模型,可根据目标轮廓的高宽比、内部信息熵和跟踪的尺度置信度实时调节网络更新频率。实验结果表明,在线VGG-M跟踪模型比传统的车辆跟踪方法的性能有明显的改善。 Aiming at the low accuracy of front moving vehicle tracking in complex scenes,the huge VGG-M network model is applied to real-time tracking,and the online observation model is used to achieve stable and accurate tracking of front vehicles.By improving the sample generation scheme and optimizing the network training set,the efficiency of network training is enhanced.Furthermore,with adaptive update model adopted,the network update frequency can be adjusted in real time according to the aspect ratio of target profile,internal information entropy and the confidence of tracking scale.Experimental results show that the online VGG-M tracking model achieves better performance than the traditional vehicle tracking methods.
作者 刘国辉 张伟伟 吴训成 宋晓琳 许莎 温培刚 Liu Guohui;Zhang Weiwei;Wu Xuncheng;Song Xiaolin;Xu Sha;Wen Peigang(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201600;;Hunan University,Laboratory of Advanced Design and Manufacturing for Vehicle Body,Changsha 410082)
出处 《汽车工程》 EI CSCD 北大核心 2019年第1期57-63,共7页 Automotive Engineering
基金 国家自然科学基金(51675324 51575169 51805312) 上海高校青年教师培养计划(ZZGCD15102) 上海工程技术大学校启科研项目(2016-19) 上海工程技术大学研究生科研创新项目(16KY0602) 第八批(2017年)"上海高校教师产学研计划"(A3-0100-17-SDJH337) 上海市青年科技英才扬帆计划(18YF1409400)资助
关键词 深度学习 前车跟踪 在线观测模型 网络自适应更新模型 deep learning front vehicle tracking online observation model network adaptive update model
  • 相关文献

参考文献4

二级参考文献31

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2李斌.[D].长春:吉林大学,2001.
  • 3夏伟才,曾致远.一种基于卡尔曼滤波的背景更新算法[J].计算机技术与发展,2007,17(10):134-136. 被引量:13
  • 4Bensrhair A,Broggi A.Stereo Vision-based Feature Extraction for Vehicle Detection[C].IEEE Symposium on Intelligent Vehicles,France,June 2002.
  • 5Srinivasa N.A Vision-based Vehicle Detection and Tracking Method for Forward Collision Warning[C].IEEE Intelligent Vehicle Symposium,2002.
  • 6Margrit Betke.Multiple Vehicle Detection and Tracking in Hard Real-Time[C].IEEE Symposium on Intelligent Vehicles,France,June 2002.
  • 7Sun Zehang,Bebis George.On-road Vehicle Detection Using Gabor Filters and Support Vector Machines[C].International Conference on Digital Signal Processing,Greece,July 2002.
  • 8Bensrhair A,Broggi A.A Cooperative Approach to Vision-based Vehicle Detection[C].IEEE Intelligent Transportation Systems,2001.
  • 9Detlev N.Artificial Neural Networks in Real-time Car Detection and Tracking Applications[C].Pattern Recognition Letters,1996.
  • 10Chen Wen-Shiung,Yuan Shang-Yuan.Algorithms to Estimating Fractal Dimension of Textured Images[C].Image and Multidimensional Signal Processing Session,2001.

共引文献67

同被引文献28

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部