期刊文献+

Kalman滤波的BP神经网络模型在变形中的应用 被引量:2

Application of Kalman Filter's BP Neural Network Model in Deformation
下载PDF
导出
摘要 针对神经网络模型在建模过程中受到各种噪声影响这一问题,提出利用Kalman滤波降低噪声,建立组合模型。经过工程实例验证,证明基于滤波算法的BP神经网络模型在一定程度上可以提高预测值的精度和预测模型的稳定性,更稳定地反映了监测目标的变化趋势,在形变监测中优势明显。 For the problem of the neural network model is affected by noises during the process of modeling,the method of making use of Kalman filter to lower the noise is put forward to establish segment pattern.Verified by engineering project,it has been verified that the BP neural network model which is based on filtering algorithm is able to improve the precision of predicted value and the stability of prediction model in a certain degree,and the variation trend of the monitored object can be more stably reflected,so that it has more advantages in deformation monitoring.
作者 陈盟 姜刚 Chen Meng;Jiang Gang(Institute of Geological Engineering and Surveying,Chang an University,Xi'an 710064,China)
出处 《甘肃科学学报》 2019年第1期17-21,共5页 Journal of Gansu Sciences
基金 国家自然科学基金项目(41501499) 中央高校基本科研业务费专项基金项目(300102268206)
关键词 形变监测 KALMAN滤波 BP神经网络 组合模型 预测值 Deformation monitoring Kalman filter BP neural network Segment pattern Predictive value
  • 相关文献

参考文献12

二级参考文献114

共引文献246

同被引文献18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部