期刊文献+

基于Lasso稀疏学习的径向基函数神经网络模型 被引量:7

Radial Basis Function Neural Network Model Based on Lasso Sparse Learning
下载PDF
导出
摘要 传统径向基函数(RBF)神经网络模型使用完整的隐含层节点进行模型构建时,会因缺乏隐含层节点抽取机制而使得受训模型的泛化性能下降,导致模型更加复杂。为此,提出一种改进的RBF神经网络模型。通过Lasso稀疏约束对隐含层节点和输出层连接权值进行稀疏表示,去除冗余和不相关隐含层节点的同时保留重要的隐含层节点,并使用交叉验证和网格搜索确定收缩参数以优化模型分类性能。实验结果表明,与现有RBF神经网络模型相比,该模型具有更低的计算复杂度和更高的分类精度。 The traditional Radial Basis Function(RBF) neural network model uses all hidden layer nodes to construct the model.In this case,the generalization performance of traditional RBF neural network model is degraded because of the lackness of the effective hidden layer nodes extraction mechanism,which will easily leads to more complicated of model.In order to solve this problem,this paper proposes an improved RBF neural network model.It realizes sparse representation of hidden layer nodes and output layer connection weights by Lasso sparse constraint to remove redundant and uncorrelated hidden layer nodes,and retain important hidden layer nodes.The shrinkage parameter are determined by Cross Validation(CV) and grid search,so as to optimize model classification performance.Experimental results show that RBF neural network model based on Lasso sparse learning can not only reduce the calculation complexity of the model,but also improve the classification accuracy compared with existing RBF neural network model.
作者 崔晨 邓赵红 王士同 CUI Chen;DENG Zhaohong;WANG Shitong(School of Digital Media,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第2期173-177,共5页 Computer Engineering
基金 国家自然科学基金(61772239 61403247) 国家重点研发计划(2016YFB0800803) 江苏省杰出青年基金(BK20140001)
关键词 数据挖掘 Lasso稀疏学习 径向基函数 神经网络 收缩参数 data mining Lasso sparse learning Radial Basis Function(RBF) neural network shrinkage parameter
  • 相关文献

参考文献3

二级参考文献35

  • 1邓赵红,王士同.鲁棒性的模糊聚类神经网络[J].软件学报,2005,16(8):1415-1422. 被引量:11
  • 2Jang J S R, Sun C T, and Mizutani E. Neuro-Fuzzy and Soft- Computing. Upper Saddle River, N J, Prentice-Hall, 1997: 125-134.
  • 3Vapnik V. Statistical Learning Theory. New York: Wiley, 1998: 256-396.
  • 4Huang G B, Zhu Q Y, and Siew C K. Extreme Learning Machine: Theory and Applications. Neurocomputing, 2006, 70(1-3): 489-501.
  • 5Cao J W, Lin Z P, and Huang G B. Composite function wavelet neural networks with differential evolution and extreme learning machine. Neural Processing Letters, 2011, 33(3): 251-265.
  • 6Huang G B and Wang D H. Advances in extreme learning machines (ELM2010). Neuroeomputing, 2011, 74(16): 2411- 2412.
  • 7Lan Y, Soh Y C, and Huang G B. Two-stage extreme learning machine for regression. Neurocomputing, 2010, 73(16-18): 3028-3038.
  • 8Lan Y, Soh Y C, and Huang G B. Constructive hidden nodes selection of extreme learning machine for regression. Neurocomputing, 2010, 73(16-18): 3191-3199.
  • 9Cao J W, Lin Z P, and Huang G B. Composite function wavelet neural networks with extreme learning machine. Neurocomputing, 2010, 73(7-9): 1405-1416.
  • 10Huang Guang-bin, Ding Xiao-jian, and Zhou Hong-ming. Optimization method based extreme learning machine for classification. Neurocomputing, 2011, 74(1-3): 155-163.

共引文献9

同被引文献74

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部