摘要
Rare earth catalysts possessing characteristics of cation-anion ion pair show advantages of adjusting electronegativity and steric hindrance of metal active sites, which can control the catalytic performance and stereoselectivity better than those of traditional metallocene and Ziegler-Natta catalysts in diene polymerization. In this work, a series of neodymium organic sulfonate complexes,Nd(CF_3SO_3)_3·x H_2O·y L(x, y: the coordination number; L refers to an organic electron donating ligand, such as acetylacetone(acac), isooctyl alcohol(IAOH), tributyl phosphate(TBP), etc.), have been synthesized to form the cationic active species in the presence of alkylaluminum such as Al(i-Bu)_3, AlEt_3, and Al(i-Bu)_2H, which display high activities and distinguishing cis-1,4 selectivities(up to99.9%) for the polymerization of butadiene. The microstructures, yield, molecular weight, and molecular weight distribution of the resulting polymer are well controlled by adjusting electronegativity/steric hindrance of the complexes. In addition, the kinetics, active species, and the possible process of polymerization are also discussed in this article.
Rare earth catalysts possessing characteristics of cation-anion ion pair show advantages of adjusting electronegativity and steric hindrance of metal active sites, which can control the catalytic performance and stereoselectivity better than those of traditional metallocene and Ziegler-Natta catalysts in diene polymerization. In this work, a series of neodymium organic sulfonate complexes,Nd(CF_3SO_3)_3·x H_2O·y L(x, y: the coordination number; L refers to an organic electron donating ligand, such as acetylacetone(acac), isooctyl alcohol(IAOH), tributyl phosphate(TBP), etc.), have been synthesized to form the cationic active species in the presence of alkylaluminum such as Al(i-Bu)_3, AlEt_3, and Al(i-Bu)_2H, which display high activities and distinguishing cis-1,4 selectivities(up to99.9%) for the polymerization of butadiene. The microstructures, yield, molecular weight, and molecular weight distribution of the resulting polymer are well controlled by adjusting electronegativity/steric hindrance of the complexes. In addition, the kinetics, active species, and the possible process of polymerization are also discussed in this article.
基金
the National Natural Science Foundation of China(Nos.51473156 and 51873203)
Key Projects of Jilin Province Science and Technology Development Plan(Nos.2018020108GX and 20160204028GX)