期刊文献+

平面上的逆Bonnesen-型Minkowski不等式 被引量:3

Reverse Bonnesen-Style Minkowski Inequalities in the Plane
原文传递
导出
摘要 研究了平面中形如A^2_(K,L)-A_KA_L≤U_(K,L)的Minkowski不等式的上界,即逆Bonnesen-型Minkowski不等式.设K,L是平面中的凸体,其面积分别为A_K,A_L,其中A_(K,L)为两凸体的混合面积,U_(K,L)为与K,L有关的几何不变量.利用平面上给定两凸体的支持函数,构造一类与给定凸体相关的新凸体.通过对新凸体几何性质的讨论,得到了一些新的加强的逆Bonnesen-型Minkowski不等式,并用此类不等式可推出一些已有结果. We study in this paper the upper bound of the Minkowski inequality in the plane,i.e.a reverse Bonnesen-style Minkowski inequality,such as A2K,L-A KAL≤UK,L.Let K and L be convex bodies whose areas are AK and AL,respectively,and AK,L is the mixes area of the two convex bodies and UK,L is the geometric invariant related to K and L.We construct a class of convex body by the support function of the given convex bodies.By discussing the geometric properties of the new convex body,we obtain some new stronger reverse Bonnesen-style Minkowski inequalities and some results can be derived from those inequalities.
作者 周媛 张增乐 ZHOU Yuan;ZHANG Zeng-le(School of Mathematics and Statistics,Southwest University,Chongqing 400715,China;School of Mathematics and Finance,Chongqing University of Arts and Sciences,Yongchuan Chongqing 402160,China)
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期70-74,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(11671325)
关键词 凸体 支持函数 MINKOWSKI不等式 逆Bonnesen-型Minkowski不等式 convex body support function Minkowski inequality reverse Bonnesen-style Minkowski inequality
  • 相关文献

参考文献5

二级参考文献22

  • 1LI Ming & ZHOU JiaZu School of Mathematics and Statistics,Southwest University,Chongqing 400715,China.An isoperimetric deficit upper bound of the convex domain in a surface of constant curvature[J].Science China Mathematics,2010,53(8):1941-1946. 被引量:17
  • 2李小燕,何斌吾.对偶Brunn-Minkowski-Firey定理[J].数学杂志,2005,25(5):545-548. 被引量:6
  • 3周家足.平面Bonnesen型不等式[J].数学学报(中文版),2007,50(6):1397-1402. 被引量:33
  • 4SCHNEIDER R. Convex Bodies: The Brunn-Minkowski Theory [M]. Cambridge: Cambridge University Press, 2013.
  • 5LUTWAK E. Dual Mixed Volumes I-J]. Pac J Math, 1975, 58(2) : 531-538.
  • 6LUTWAK E. Intersection Bodies and Dual Mixed Volumes [J]. Adv Math, 1988, 71(2) .. 232-261.
  • 7LUTWAK E. Centroid Bodies and Dual Mixed Volumes FJ]. Proc London Math Soc, 1990, 60(2).. 365-391.
  • 8SCHNEIDER R. Convex Bodies: The Brunn-Minkowski Theory [M]. 2th ed. New York: Cambridge Univ Press, 2014.
  • 9GRINBERG E, ZHANG G. Convolutions, Transforms, and Convex Bodies EJ]. Proc London Math Soc, 1999, 78(3): 77-115.
  • 10HABERL C. Lp Intersection Bodies I-J]. Adv Math, 2008, 217(6) : 2599-2624.

共引文献29

同被引文献9

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部