期刊文献+

基于信号传播特性的物理层密钥生成方案 被引量:6

Physical Layer Secret Key Generation Scheme Based on Signal Propagation Characteristics
下载PDF
导出
摘要 传统基于接收信号强度的物理层密钥生成方案在窃听者靠近合法方时,合法方的密钥易被窃听者获取.针对该问题,在分析密钥误比特率的基础上,提出一种基于信号传播特性的物理层密钥生成方案.方案根据接收信号强度的实测样本估计大尺度衰落模型,提取出多径效应影响下的小尺度参数量化生成密钥.实验结果表明相比于传统方案,本方案在室内环境窃听距离大于0. 6倍波长以后,窃听方密钥误比特率大于0. 48;在室外环境窃听距离大于1倍波长后窃听方密钥误比特率为0. 47,实现了安全可靠的物理层密钥生成. The existing physical layer secret key generation scheme is not sufficiently secure when the eavesdropper keeps close to the legitimate user to get the correlated channel characteristics.To solve the problem,this paper analyzes the secret key bit error rate and proposes a physical layer secret key generation scheme based on signal propagation characteristics.We calculate the large scale fading model which parameters is fitted by the measured sample,in order to get the small scale parameter of received signal strength indication under the effect of multipath fading to quantify into binary secret bit.The experimental results show that compared with the traditional scheme,in the indoor environment,after eavesdropping distance is greater than 0.6 wavelength,the eavesdropper key bit error rate is greater than 0.48.And in the outdoor environment,after the eavesdropping distance is greater than 1 wavelength,the eavesdropper key bit error rate is 0.47.Secure and reliable physical layer secret key generation is achieved.
作者 胡晓言 金梁 黄开枝 钟州 张胜军 HU Xiao-yan;JIN Liang;HUANG Kai-zhi;ZHONG Zhou;ZHANG Sheng-jun(National Digital Switching System Engineering & Technological R&D Center,Zhengzhou,Henan 450002,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第2期483-488,共6页 Acta Electronica Sinica
基金 国家"863"高技术研究发展计划(No.2015AA01A708) 国家自然科学基金(No.61471396 No.61521003 No.61601514 No.61501516)
关键词 物理层安全 密钥生成 信号传播特性 接收信号强度 密钥误比特率 physical layer security secret key generation signal propagation characteristics received signal strength indicator(RSSI) secret key bit error rate
  • 相关文献

参考文献2

二级参考文献28

  • 1ISDN0-7381-1812-5. Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY) Specifications ANSI/IEEE. Std 802. 11[s].
  • 2Bruce Schneier. Applied Cryptography[M]. USA: Wiley, 1997.
  • 3E Dawson, L Nielsen. Automated cryptanalysis of XOR plaintext strings[J]. Cryptologia, 1996, (2) : 165 - lSl.
  • 4N Borisov, L Goldberg, David Wagner. Intercepting mobile communications:The insecurity of 802.11 [A] .Proc of 7th Annual Int.Conf. Mobile Computing and Networking 2001 Papers [C]. Rome, Italy: ACMCN,2001.
  • 5S Fluhrer, I Mantin, A Shamir. Weaknesses in the key scheduling algorithm of FC4 [A]. Preliminary Draft [C]. Canad.a: CRYPTO,2001.
  • 6ISDN0-7381-2927-5. IEEE. Standard for Local and Metropolitan area networks---Port-Based Network Access Control, IEEE. Std 802.1x-2001 [S].
  • 7Krawezyk H, Bekkare M, Canetti R. HMAC: Keyed-Hash for Message Authentication [Z].RFC 2104,February 1997.
  • 8Sayeed A,Perrig A.Secure wireless communications:Secret keys through multipath.IEEE ICASSP[C].Piscataway,NJ,USA:IEEE Press,2008.3013-3016.
  • 9Shannon C E.Communication theory of secrecy systems[J].J Bell Syst Tech,1949,28(4):656-715.
  • 10Xiao L,Greenstein L,Mandayam N,et al.A physical-layer technique to enhance authentication for mobile terminals.IEEE International Conference on Communications[C].Piscataway,NJ,USA:IEEE,2008.1520-1524.

共引文献24

同被引文献26

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部