期刊文献+

基于多尺度轮廓段的形状特征提取与识别 被引量:8

Shape Feature Extraction and Recognition Based on Multi-Scale Contour Segments
下载PDF
导出
摘要 形状识别是计算机视觉与模式识别领域的重要研究内容。形状的特征选取与描述是形状识别的研究热点。针对现有识别方法的不足,提出一种通过对不同长度轮廓段进行描述,进行特征提取的方法。对每个形状均在6种尺度下进行特征提取,每种尺度选取5种轮廓段特征参数,实现了对形状的特征描述。在形状识别阶段,使用动态时间规整(DTW)算法度量形状描述子之间的匹配距离,实现形状识别。分别在Kimia99、Kimia216和MPEG-7数据库中进行算法验证,结果表明基于多尺度轮廓段的形状特征描述子具有旋转、缩放、平移和局部遮挡不变性,识别率优于现有算法。 Shape recognition is an important research content in the field of computer vision and pattern recognition.Shape feature selection and description is a hot topic in shape recognition.In view of the shortcomings of the existing recognition methods,a method of feature extraction is proposed by describing different length contour segments,in which the feature parameters from six contour segments of the shape are achieved with five parameters for each contour segment.In the shape recognition stage,the Dynamic Time Warping(DTW)algorithm is used to measure the matching distance between shape descriptors to perform shape recognition.The method is verified in the Kimia99,Kimia216 and MPEG-7 databases.The results show that the shape feature descriptors based on multi-scale contour segments have invariance of rotation,scaling,translation and local occlusion,and the recognition rate is better than the existing methods.
作者 韦琪 王连明 WEI Qi;WANG Lianming(Institute of Computing Intelligence,School of Physics,Northeast Normal University,Changchun 130024,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第5期187-191,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.21227008) 吉林省重点科技攻关项目(No.20170204035GX No.20170204050GX)
关键词 形状描述 特征提取 形状识别 多尺度 shape description feature extraction shape recognition multi-scale
  • 相关文献

参考文献7

二级参考文献127

  • 1赵宏伟,陈霄,石景海,马凌蛟.综合颜色和形状特征的交通标志图像检索算法[J].吉林大学学报(工学版),2013,43(S1):128-132. 被引量:15
  • 2陈晓飞,王润生.目标骨架的多尺度树表示[J].计算机学报,2004,27(11):1540-1545. 被引量:4
  • 3刘文予,刘俊涛.基于骨架树描述符匹配的物体相似性度量方法[J].红外与毫米波学报,2005,24(6):432-436. 被引量:6
  • 4Blum H. Biological shape and visual science (Part I). Jour- nal of Theoretical Biology, 1973, 38(2): 205-287.
  • 5Belongie S, Malik J, Puzicha J. Shape matching and ob- ject recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509--522.
  • 6Daliri M R, Torre V. Robust symbolic representation for shape recognition and retrieval. Pattern Recognition, 2008, 41(5): 1782-1798.
  • 7Ling H B, Jacobs D W. Using the inner-distance for classi- fication of articulated shapes. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recogni- tion (CVPR). Washington, DC, USA: IEEE, 2005. 719-726.
  • 8Ling H B, Jacobs D W. Shape classification using the inner- distance. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2007, 29(2): 286-299.
  • 9Biswas S, Aggarwal G, Chellappa R. Efficient indexing for articulation invariant shape matching and retrieval. In: Pro- ceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis, MN: IEEE, 2007. 1-8.
  • 10Grigorescu C, Petkov N. Distance sets for shape filters and shape recognition. IEEE Transactions on Image Processing, 2003, 12(10): 1274-1286.

共引文献116

同被引文献72

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部