摘要
一阶不连续光学元件的磁流变抛光问题是制约我国高精高效光学制造领域发展的难题之一,其涉及锥形、矩形等几何形貌元件的光学元件加工问题以及常见光学元件的边缘效应控制问题。提出了基于一阶不连续光学元件的磁流变抛光流体动力学方法,建立了该类元件抛光区域流体动力分析的理论方法和数值手段。首先,对磁流变抛光工况下的流场进行了合理假设,其次,从微元流体动力方程出发,建立了适用于一阶不连续面形的流场分析方法,最后,基于有限差分法和数值迭代方法建立了流场控制方程的数值计算方法。通过对切入距离为1~18mm的抛光过程进行数值仿真,发现该方法所获取的一阶不连续面形的压力分布形态是正确的,产生的不连续压降与实验观测一致。
Magnetorheological finishing of first-order discontinuous optical elements is one of the difficult problems that restrict the development of high-precision and high-efficiency optical manufacturing in China.In this paper,a fluid dynamics analysis method for magnetorheological finishing concerning the first order discontinuous optical elements is presented.Firstly,reasonable assumptions are made for the flow field under the practical condition of magnetorheological finishing.Secondly,based on the micro-element hydrodynamic equation,a flow field analysis method suitable for the first order discontinuous surface shape is established.Finally,a numerical calculation method for the flow field governing equation is established based on the finite difference method and numerical iteration method.Through numerical simulation for cutting distance ranging over 1~18 mm,it is found that the pressure distribution pattern of the first-order discontinuous surface obtained by the proposed method is correct,and the discontinuous pressure drop generated by the proposed method is consistent with that of the experimental observation.
作者
杨航
刘小雍
马登秋
张云飞
黄文
何建国
Yang Hang;Liu Xiaoyong;Ma Dengqiu;Zhang Yunfei;Huang Wen;He Jianguo(Department of Engineering,Zunyi Normal College,Zunyi 563006,China;Institute of Mechanical Manufacturing Technology,CAEP,Mianyang 621900,China;Key Laboratory of High-precision Machining Technology,CAEP,Chengdu 610200,China)
出处
《强激光与粒子束》
EI
CAS
CSCD
北大核心
2019年第2期25-31,共7页
High Power Laser and Particle Beams
基金
贵州省科技计划项目(黔科合LH字[2017]7081
黔科合基础[2018]1179)
贵州省教育厅青年科技人才成长项目(黔教合KY字[2017]249
黔教合KY字[2018]319
黔教合KY字[2016]254)
教育部重点实验室开放基金课题项目(黔教合KY字[2017]385)
关键词
一阶不连续光学元件
边缘效应
磁流变抛光
流体动力学分析
超精密加工
first order discontinuous optical element
edge effect
magnetorheological finishing
hydrodynamic analysis
ultra-precision machining