期刊文献+

不可压缩磁流体方程组在Besov空间中的爆破准则

Blow-Up Criterion for Incompressible Magnetohydrodynamics Equations in Besov Space
下载PDF
导出
摘要 该文给出了三维不可压缩磁流体(MHD)方程组在带有负指数的非齐次Besov空间中的爆破准则.结果表明方程组的经典解存在时间有限当且仅当范数‖·‖_v_e趋于无穷,这里所定义的范数‖·‖v_e比非齐次Besov空间中的范数‖·‖_(B_(∞,∞)^(α-1))弱,其中0 <α<1. In this paper, we study the blow-up criterion of smooth solutions to the threedimensional incompressible magnetohydrodynamic(MHD) equations in Besov space of negative regular index. We show that a smooth solution breaks down if and only if the certain norm of the velocity u blows up at the same time. Here the norm ‖·‖ve is defined in nonhomogenous Besov space and it is weaker than B∞,∞α-1-norm,for 0 <α< 1.
作者 尚朝阳 Shang Zhaoyang(School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2019年第1期67-80,共14页 Acta Mathematica Scientia
基金 国家自然科学基金(11571232 11611130024)~~
关键词 不可压缩MHD 方程组 非齐次Besov空间 爆破准则 Incompressible MHD equations Blow-up criterion Besov space
  • 相关文献

参考文献1

二级参考文献9

  • 1Beale, J.T., Kato, T., Majda, A.J. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys., 94:61-66 (1984)
  • 2Bergh, J., Lofstrom, J. Interpolation spaces, An Introduction. Springer-Verlag, New York, 1976
  • 3Caflisch, R.E., I. Klapper, I., Steele, G. Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Comm. Math. Phys., 184:443-455 (1997)
  • 4Frazier. M., Tortes, R., Weiss, G. The boundedness of Caldern-Zygmund operators on the spaces F^αq p.Rev. Mat. Iberoamericana 4:41-72 (1988)
  • 5Kozono, H., Ogawa, T., Taniuchi, Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z., 242:251-278 (2002)
  • 6Majda, A.J. Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences, 53, Springer-Verlag, New York, 1984
  • 7Majda, A.J. Bertozzi, A.L. Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics,27, Cambridge University Press, Cambridge, 2002
  • 8wStein, E.M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton, 1993
  • 9Tribel, H. Theory of Function Spaces.Monograph in mathematics, Vol.78, Birkhauser Verlag, Basel, 1983

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部