摘要
控制路基沉降是公路工程中的一个关键技术问题,而路基沉降与其影响因素之间存在着线性、非线性关系。当输入自变量较多时,用传统神经网络建模容易出现过拟合现象,导致网络模型预测精度较低。针对此问题,本文用遗传算法对神经网络模型的权值和阈值进行优化,同时讨论遗传参数的设定对输出结果的影响。通过对成南高速的实测数据进行仿真,试验结果表明:优化后的BP神经网络具有较高的预测精度,预测效果明显优于传统神经网络模型的输出结果,该预测方法可作为高速公路路基长期沉降预测的一种有效辅助手段。
Controlling subgrade settlement is essential in highway engineering.Subgrade settlement has a linear and nonlinear relationship with its influencing factors.Over-fitting easily occurs in traditional neural network modeling in the presence of numerous input independent variables and results in the low prediction accuracy of the network model.This work aims to address these issues.Thus,the ability of the genetic algorithm to optimize the weight and threshold of the neural network is investigated,and the influence of the set of genetic parameters on the output results is discussed.Experiments with the proposed method show that the optimized BP neural network has higher prediction accuracy and better prediction effect than the traditional neural network model in the simulation of measured data for the Chengdu-Nanchong Highway.The prediction method can be used as an effective auxiliary means for predicting the long-term settlement of highway subgrades.
作者
彭立顺
蔡润
刘进波
郭安宁
郭志宇
PENG Lishun;CAI Run;LIU Jinbo;GUO Anning;GUO Zhiyu(Lanzhou Institute of Seismology,CEA,Lanzhou 730000,Gansu,China;Chengdu Surveying Geotechnical Research Institute Co.,Ltd.of MCC,Chengdu 610063,Sichuan,China;Xi’an Institute of Prospecting and Mapping,Xi’an 710000,Shaanxi,China)
出处
《地震工程学报》
CSCD
北大核心
2019年第1期124-130,207,共8页
China Earthquake Engineering Journal
基金
国家档案局科技项目(2017-X-43)
关键词
遗传算法
BP神经网络
路基沉降量
优化
预测
genetic algorithm
BP neural network
subgrade settlement
optimization
prediction