期刊文献+

基于连边密度传播的二分网络社区发现算法 被引量:3

COMMUNITY DISCOVERY ALGORITHM FOR BIPARTITE NETWORK BASED ON EDGE-TO-EDGE DENSITY PROPAGATION
下载PDF
导出
摘要 依据节点在社区中的连边情况,定义社区内节点的连边密度,构造社区的平均密度评价指标。经过实例验证,社区的平均密度评价指标能够克服模块度在完全图上的分辨率限制。同时,通过节点的连边密度和最优化社区的平均密度,提出连边密度传播算法。在真实数据和人工数据上进行测试,利用该算法划分社区后求得的模块度和社区平均密度都比利用BRIM算法、边集聚系数算法和资源分布算法求得的值高。这表明相比以上三种算法,连边密度传播算法更能够有效地发现二分网络的社区结构。 According to the connection of nodes in the community, we defined the connection density of nodes in the community, and constructed the average density evaluation index of the community. The examples show that the average density evaluation index of community can overcome the resolution limitation of modularity on the complete graph. We proposed a edge-to-edge density propagation algorithm by optimizing the connection density of nodes and the average density of communities. The validation on real data and artificial data shows that the modularity and average density of community obtained by this algorithm is higher than that obtained by BRIM algorithm, edge clustering coefficient algorithm and resource distribution algorithm. The results show that compared with the above three algorithms, the algorithm is more effective in finding the community structure of the bipartite network.
作者 安晓丹 张晓琴 曹付元 An Xiaodan;Zhang Xiaoqin;Cao Fuyuan(School of Mathematics Sciences, Shanxi University, Taiyuan 030006, Shanxi, China;School of Statistics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China;School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China)
出处 《计算机应用与软件》 北大核心 2019年第3期243-248,254,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61573229) 山西省回国留学人员科研资助项目(2017-020) 山西省基础研究计划项目(201701D121004) 山西省高等学校教学改革创新项目(J2017002)
关键词 二分网络 节点 社区发现 评价指标 Bipartite network Nodes Community detecting Evaluation index
  • 相关文献

参考文献7

二级参考文献65

  • 1Watts D J, Strogatz S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393(6684): 440.
  • 2Morris S A, Yen G G. Construction of bipartite and unipartite weighted networks from collections of journal papers [EB/OL]. [2009-05-26-]. http://arxiv, org/abs/ physics/0503061.
  • 3Newman M E J. Scientific collaboration networks I : network construction and fundamental results[J]. Physical Review E, 2001,64:016131.
  • 4Newman M E J. Scientific collaboration networks Ⅱ: shortest paths, weighted networks, and centrality [J]. Physical Review E, 2001,64:016132.
  • 5Girvan M, Newman M E J. Community structure in social and biological networks [J]. Proceedings of the National Academy of Sciences, 2002, 99 : 7821.
  • 6Ravasz E, Somera A L, Mongru D A, et al. Hierarchical organization of modularity in metabolic networks [J]. Science, 2002,297: 1551.
  • 7Latapy M, Magnien C, Vecchio N D. Basic notions for the analysis of large two-mode networks[J].Social Networks, 2008, 30:31.
  • 8Michael J B. Modularity and community detection in bipartite networks [J]. Physical Review E, 2007, 76:066102.
  • 9Guimera R, Sales-Pardo M, Amaral L. Module identification in bipartite and directed networks[J].Physical Review E, 2007, 76:036102.
  • 10Lehmann S, Schwartz M, Hansen L K. Biclique communities[J]. Physical Review E, 2008, 78: 016108.

共引文献21

同被引文献14

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部