期刊文献+

基于CUSUM控制图的电离层慢变故障检测方法 被引量:4

Ionospheric Slow-Growing Error Detection Method Based on CUSUM Control Chart
下载PDF
导出
摘要 为了提高地基增强系统(GBAS)空间段电离层慢变故障检测灵敏度,引入了变点分析理论,提出了基于累积和(CUSUM)控制图的电离层慢变故障检测方法。首先,给出了基于CUSUM控制图的完好性监测方法,并利用Markov链获得CUSUM控制图检测阈值;然后,计算了卫星信号伪码-载波偏离度,提出了一种基于Gaussian膨胀法的伪码-载波偏离度标准差确定方法;最后,验证试验结果表明,当电离层延时平稳时伪码-载波偏离度的累积和在阈值范围内,当电离层出现慢变故障时,检测时间为7 s,能够迅速排除故障卫星,增强了GBAS的完好性,从而提高了系统可用性。 To improve the detection sensitivity of ionospheric slow-growing errors(SGEs)in space segment of ground based augmentation system(GBAS),the change point analysis theory is introduced,and an ionospheric slow-growing error detection method based on cumulative sum(CUSUM)control chart is proposed.Firstly,an integrity monitoring method based on CUSUM control chart is presented,and the detection threshold of the CUSUM control chart is obtained with Markov chain.Then,the pseudo code-carrier divergence(CCD)of satellite signals is calculated,and a method for determining standard deviation of CCD based on Gaussian expansion method is proposed.Finally,validation experiment results show that:when the ionospheric delay is stable,the CUSUM value of the CCD is within the threshold;when the ionospheric SGEs occur,the detection time is about 7 seconds,and the fault satellite can be quickly isolated,enhancing the integrity of the GBAS.Thus,the system availability is enhanced.
作者 胡杰 严勇杰 单尧 HU Jie;YAN Yongjie;SHAN Yao(State Key Laboratory of Air Traffic Management System and Technology, Nanjing 210007, China)
出处 《指挥信息系统与技术》 2019年第1期49-54,共6页 Command Information System and Technology
基金 国家重点研发计划(2016YFB0502405和2017YFB0503401) 江苏省自然科学基金青年基金(BK20170157)资助项目
关键词 地基增强系统 慢变故障 累积和 伪码-载波偏离度 ground based augmentation system(GBAS) slow-growing error(SGE) cumulative sum(CUSUM) pseudo code-carrier divergence(CCD)
  • 相关文献

参考文献4

二级参考文献73

  • 1Page E S. Continuous inspection schemes [J]. Biometrika, 1954, 41: 100-115.
  • 2Robert S W. Control chart test based on geometric moving averages [J]. Technometrics, 1959, 1: 239-250.
  • 3Montgomery D C. Introduction to Statistical Quality Control (4th ed) [M]. New York: John Wiley & Sons, 2004.
  • 4Hawkins D M, and Olwell D H. Cumulative Sum Charts and Charting for Quality Improvement [M]. New York: Springer-Verlag, 1998.
  • 5Wetherill G B, and Brown D W. Statistical Process Control [M]. Chapman and Hall, 1991.
  • 6Brook D, and Evans D A. An approach to the probability distribution of CUSUM run length [J]. Biometrika, 1972, 59: 539-549.
  • 7Hawkins, Douglas M. Evaluation of the average run length of cumulative sum charts for an arbitrary data distribution [J]. Communication in Statistics-Simulation and Computation, 1992, 21: 1001- 1020.
  • 8Sparks R S. CUSUM charts for signalling varying locations shifts [J]. Journal of Quality Technology, 2000, 32: 157-171.
  • 9Shu L, and Jiang W. A Markov chain model for the adaptive CUSUM control chart [J]. Journal of Quality Technology, 2006, 38: 135-147.
  • 10Van Dobben de Bruyn C S. Cumulative Sum Test: Theory and Practice [M]. London: Griffin, 1968.

共引文献47

同被引文献31

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部