摘要
为了克服基本鲸鱼优化算法(WOA)在解决作业车间调度问题时存在收敛精度低、容易陷入局部最优的缺陷,利用量子计算与优化思想提出了一种量子鲸鱼优化算法(QWOA),并对其进行了计算复杂度分析、全局收敛性证明及仿真实验。通过对11个作业车间调度问题基准算例的仿真实验发现,与基本鲸鱼优化算法、布谷鸟搜索算法(CS)、灰狼优化算法(GWO)相比,QWOA算法在最小值、平均值、寻优成功率等方面具有较优结果。研究表明,量子鲸鱼优化算法在解决作业车间调度问题时,具有更高的收敛精度和更好的全局搜索能力,且能够跳出局部最优。
To overcome whale optimization algorithm's disadvantages of poor convergence and being easily trapped in local optima in solving Job-Shop scheduling problem,this paper proposed a quantum whale optimization algorithm(QWOA)based on the idea of quantum computation.Then it provided the computational complexity analysis,global convergence proof and simulation experiments of QWOA.Based on a set of 11 JSP benchmark instances,the simulation experiments show that QWOA has better results than whale optimization algorithm(WOA),cuckoo search(CS)and grey wolf optimizer(GWO),in the minimum value,average value and success rate.Finally,this paper concludes that QWOA has the merits of higher convergence accuracy,higher local optima avoidance and better exploration.
作者
闫旭
叶春明
姚远远
Yan Xu;Ye Chunming;Yao Yuanyuan(Business School,University of Shanghai for Science&Technology,Shanghai 200093,China)
出处
《计算机应用研究》
CSCD
北大核心
2019年第4期975-979,共5页
Application Research of Computers
基金
国家自然科学基金资助项目(71271138)
上海理工大学科技发展项目(16KJFZ028)
上海市高原学科项目(GYXK1201)
关键词
鲸鱼优化算法
量子计算与优化
作业车间调度
收敛性证明
混合算法
whale optimization algorithm
quantum computing and optimization
Job-Shop scheduling problem
convergence proof
hybrid algorithm