期刊文献+

一致模的序关系 被引量:1

Order Relations of Uninorms
下载PDF
导出
摘要 三角模(三角余模)是一类重要的模糊算子,广泛应用于模糊控制、模糊聚类和人工智能中。作为三角模(三角余模)的推广,一致模广泛应用于多值逻辑、专家系统、图像处理、信息融合等领域。本文围绕一致模的序关系展开讨论,针对每一类一致模分析了相应的最大元和最小元,对一致模的应用具有一定的指导意义。 Triangle norm(triangle conorm)is a kind of important fuzzy operator which is widely used in fuzzy control,fuzzy clustering and artificial intelligence.As the extension of triangle norm(triangle conorm),uninorm is extensively used in multi-valued logic,expert system,image processing,information fusion and many other fields.In this paper,the order relations of uninorms are discussed,and the corresponding maximum and minimum elements are analyzed for each class of uninorms,which is of guiding significance for the application of uninorms.
作者 侯晓东 李钢 HOU Xiao-dong;LI Gang(School of Mathematics and Statistics,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250353,China)
出处 《齐鲁工业大学学报》 2019年第1期74-80,共7页 Journal of Qilu University of Technology
基金 国家自然科学基金(61573211)
关键词 一致模 序关系 三角模 uninorm order relation triangular norm
  • 相关文献

参考文献2

二级参考文献28

  • 1PETERSON J,HUNG K C,LIN S J.On the Mitchell similarity measure and its application to pattern recognition[J].Pattern Recognition Letters,2012,33(9):1219-1223.
  • 2LI Deng-feng,CHENG Chun-tian.New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions[J].Pattern Recognition Letters,2002,23(1):221-22.
  • 3HWANG Chao-ming,YANG Miin-shen,HUNG Wen-liang,et al.A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recogni.
  • 4DENG Yong,SHI Wen-kang,DU Feng,et al.A new similarity measure of generalized fuzzy numbers and its application to pattern recognition[J].Pattern Recognition Letters,2004,.
  • 5PAWLAK Z.Rough sets[J].International Journal of Computer and Information Sciences,1982,11(5):341-356.
  • 6SKOWRON A,STEPANIUK J.Tolerance approximation spaces[J].Fundamenta Informaticae,1996,27(2):245-253.
  • 7SLOWINSKI R,VANDERPOOTEN D.A generalized definition of rough approximations based on similarity[J].Knowledge and Data Engineering,IEEE Transactions on Industrial Electron.
  • 8YAO Y Y.Relational interpretations of neighborhood operators and rough set approximation operators[J].Information Sciences,1998,111(1/4):239-259.
  • 9ZAKOWSKI W.Approximations in the space (U,Π)[J].Demonstratio Mathematica,1983,16(40):761-769.
  • 10ZHU W,WANG Fei-yue.Reduction and axiomization of covering generalized rough sets[J].Information Sciences,2003,152(15):217-230.

共引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部