期刊文献+

面向活体人脸检测的时空纹理特征级联方法 被引量:15

Spatial-Temporal Texture Cascaded Feature Method for Face Liveness Detection
下载PDF
导出
摘要 为了解决身份认证中的安全问题,通常采用活体人脸检测方法.为提高活体人脸检测的鲁棒性,文中提出时空纹理特征级联方法.首先采用局部二值模式(LBP)计算韦伯局部描述符(WLD)的差分激励,利用Prewitt算子计算WLD的方向角,提取时空域的纹理特征.再将3个正交时空平面XY、XT、YT的纹理特征直方图进行级联,得到动态纹理特征即时空纹理级联特征,并对真实人脸和伪装人脸做出判定.在公开活体人脸数据库上的实验表明,相比现有主流局部纹理特征方法,文中方法识别率更高. To solve the security problem in identity authentication,the face liveness detection method is always employed.Therefore,a spatial-temporal texture cascaded feature method is proposed to improve the robustness of living face detection.Firstly,local binary pattern(LBP)is utilized to calculate the differential excitation of Weber local descriptor(WLD),and Prewitt operator is exploited to calculate the directional angle of WLD to extract texture features in time domain and space domain.Secondly,the histogram of texture features obtained from three orthogonal space-time planes,XY,XT and YT,is cascaded.Finally,the dynamic texture features,namely spatial-temporal texture cascade features,can be used to determine whether the real face or the disguised face.Experimental results on CASIA face anti-spoofing database and replay-attack database show that the proposed method obtains higher recognition rate than the existing mainstream local texture feature methods and it can be widely used in identity authentication and security monitoring systems.
作者 甘俊英 翟懿奎 项俐 曹鹤 何国辉 曾军英 谭海英 邓文博 GAN Junying;ZHAI Yikui;XIANG Li;CAO He;HE Guohui;ZENG Junying;TAN Haiying;DENG Wenbo(School of Information Engineering,Wuyi University,Jiangmen 529020)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2019年第2期117-123,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61771347 61072127 61372193) 广东省自然科学基金项目(No.S2013010013311 10152902001000002 S2011010001085 S2011040004211)资助~~
关键词 活体人脸检测 局部纹理特征 动态纹理特征 时空纹理级联特征 Face Liveness Detection Local Texture Feature Dynamic Texture Feature Spatial-Temporal Texture Cascaded Feature
  • 相关文献

参考文献2

二级参考文献19

  • 1N. M. Duc and B. Q. Minh. Your face is not your pass- word[ C] JjBlack Hat Conference,2009:1-16.
  • 2T. Choudhury, B. Clarkson, T. Jebara, A. Pentland. Mul- timodal person recognition using unconstrained audio and video[C] JJAVBPA 99, Washington DC, 1999: 176-181.
  • 3K. Kollreider, H. Fronthaler, J. Bignn. Evaluating live- ness by face images and the structure tensor[ C] fFourth IEEE Workshop on Automatic Identification A-dvanced Technologies, Oct. 2005:75-80.
  • 4D.A. Socolinsky, A. Selinger, J. D. Neuheisel. Face Recognition with Visible and Thermal Infrared Imagery [J]. CVIU, 2003,91(1-2): 72-114.
  • 5Hyung-Keun Jee, Sung-Uk Jung, Jang-hee Yoo. Liveness detection for embedded face recognition system[ J ]. Inter- nation Journal of Medicine Science, 2006: 235-238.
  • 6G. Pan, L. Sun, Z. Wu, S. Lao, Eyeblink-based Anti- Spoofing in Face Recognition from a Generic Webcamera [C]//in Proc. llth IEEE ICCV, 2007: 1-8.
  • 7J. Li, Y. Wang, T. Tan, A. Jain, Live Face Detection Based on the Analysis of Fourier Spectra [ C ] //Biometric Technology for Human Identification, Proc. SPIE, vol. 5404, 2004: 296-303.
  • 8I. Chingovska, A. Anjos, and S. Marcel. On the effec- tiveness of local binary patterns in face anti-spoofing. In A. Bromme and C. Busch, editors, BIOSIG, IEEE, 2012: 1-7.
  • 9Jukka Maatta, Abdenour Hadid, Matti Pietikainen. Face Spoofing Detection From Single Images Using Micro-Tex- ture Analysis [ C ]//International Joint Conference on Bio- metrics ( IJCB2011 ) Washington DC, USA,2011 : 10-17.
  • 10Jukka Maatta, Abdenour Hadid, Matti Pietikainen. Face spoofing detection from single images using texture and lo- cal shape analysis[ J]. The Institution of Engineering and Technology 2012 ( lET Biometrics 2012 ). 2012, 1 ( 1 ) : 3-10.

共引文献24

同被引文献84

引证文献15

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部