期刊文献+

基于用户行为数据分析的个性化推荐算法分析 被引量:5

Analysis of personalized recommendation algorithm based on user behavior data analysis
下载PDF
导出
摘要 文中从用户行为及时间效应两方面出发,研究出了基于用户行为数据的个性化推荐算法。首先,研究了基于用户行为数据时间效应的推荐算法,分析根据线性时间加权推荐算法中的问题。其次,由于用户兴趣并不只是单纯的根据时间的线性变化,其主要是根据时间段发生变化,故文中分析了与时间窗口技术结合的推荐算法。最后,结合时间效应及并行化推荐算法进行改进,实现了个性化推荐算法。结果表示,此推荐算法能够对推荐结果进行优化,使算法精准性得到有效的提高。 This paper studies the personalized recommendation algorithm based on user behavior data from two aspects of user behavior and time effect. Firstly,the recommendation algorithm based on the time effect of user behavior data is studied,and the problem in the linear time-weighted recommendation algorithm is analyzed. Secondly,since user interest is not simply a linear change according to time,it mainly changes according to the time period. Therefore,this paper analyzes the recommendation algorithm combined with time window technology. Finally,combined with the time effect and parallel recommendation algorithm,the personalized recommendation algorithm is implemented. The result shows that this recommendation algorithm can optimize the recommendation results and effectively improve the accuracy of the algorithm.
作者 皇甫汉聪 肖招娣 HUANGFU Han-cong;XIAO Zhao-di(Foshan Power Supply Bureau,Guangdong Power Grid Company,Foshan 528000,China)
出处 《电子设计工程》 2019年第7期38-41,46,共5页 Electronic Design Engineering
关键词 用户行为 数据分析 个性化推荐 算法研究 user behavior data analysis personalized recommendation algorithm research
  • 相关文献

参考文献5

二级参考文献58

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 2Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005,17 (6) : 734-749.
  • 3Herlocker J L, Konstan J A, Borchers A, et al. An algorithmic framework for performing collaborative filtering [ C ]/! Proceedings of SIGIR'99, 1999 : 230-237.
  • 4Massa P, Avesani P, Trust-aware collaborative filtering for recommender systems[ C ]/! Proceedings of FederatedInternational Conference on the Move to Meaningful Internet, 2004 : 492-508.
  • 5Ziegler C N, Lausen G. Analyzing correlation between trust and user similarity in online communities [ C ]// Trust Management Second International Conference, 2004 : 251-265.
  • 6Yuan W, Shu L, Chao H C, et al. iTARS: trust-aware recommender system using implieit trust networks [ J ] Communications, IET, 2010, 4 (14) : 1709-1721.
  • 7O'Donovan J, Smyth B. Trust in recommender systems [ C]// Proceedings of the 10th International Conference on Intelligent User Interfaces, 2005:167-174.
  • 8Lathia N, Hailes S, Capra L. Trust-based collaborative filtering [ C ]// Proceedings of IFIPTM 2008, 2008: 119-134.
  • 9Milgram S. The small world problem [ J]. Psychology Today, 1967,1(1) : 61-67.
  • 10Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms [ C ]// Proceedings of ACM international World Wide Web conference, 2001:285-295.

共引文献18

同被引文献46

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部