期刊文献+

分布式多数据流频繁伴随模式挖掘 被引量:11

Distributed Mining of Frequent Co-occurrence Patterns across Multiple Data Streams
下载PDF
导出
摘要 多数据流频繁伴随模式是指一组对象较短时间内在同一个数据流上伴随出现,并在之后一段时间以同样方式出现在其他多个数据流上.现实生活中,城市交通监控系统中的伴随车辆发现、基于签到数据的伴随人群发现、基于社交网络数据中的高频伴随词组发现热点事件等应用都可以归结为多数据流频繁伴随模式发现问题.由于数据流规模巨大且到达速度快,基于单机的集中式挖掘算法受到硬件资源的限制难以及时发现海量数据流中出现的频繁伴随模式.为此,提出面向大规模数据流频繁伴随模式发现的分布式挖掘算法.该算法首先将每个数据流划分成若干个segment片段,然后构建适合部署在分布式计算平台上的多层挖掘模型,并利用多计算节点以并行方式对大规模数据流进行处理,从而实时发现频繁伴随模式.最后,在真实数据集上进行充分实验以验证算法性能. A frequent co-occurrence pattern across multiple data streams refers to a set of objects occurring in one data stream within a short time span and this set of objects appear in multiple data streams in the same fashion within another user-specified time span. Some real applications, such as discovering groups of cars that travel together using the city surveillance system, finding the people that are hanging out together based on their check-in data, and mining the hot topics by discovering groups of frequent co-occurrence keywords from social network data, can be abstracted as this problem. Due to data streams always own tremendous volumes and high arrival rates, the existing algorithms being designed for a centralized setting cannot handle mining frequent co-occurrence patterns from the large scale of streaming data with the limited computing resources. To address this problem, FCP-DM, a distributed algorithm to mine frequent co-occurrence patterns from a large number of data streams, is proposed. This algorithm first divides the data streams into segments, and then constructs a multilevel mining model in the distributed environment. This model utilizes multiple computing nodes for detecting massive volumes of data streams in a parallel pattern to discover frequent co-occurrence patterns in real-time. Finally, extensive experiments are conducted to fully evaluate the performance of the proposal.
作者 于自强 禹晓辉 董吉文 王琳 YU Zi-Qiang;YU Xiao-Hui;DONG Ji-Wen;WANG Lin(School of Information Science and Engineering, University of Ji’nan, Ji’nan 250022, China;School of Computer Science and Technology, Shandong University, Ji’nan 250101, China)
出处 《软件学报》 EI CSCD 北大核心 2019年第4期1078-1093,共16页 Journal of Software
基金 国家自然科学基金(61702217 61771230 61772231 61873324) 山东省重点研发计划(2017GGX10144 2018GGX101048 2017CXGC0701 2016ZDJS01A12) 山东省自然科学基金(ZR2017MF025) 济南大学科技发展计划(XKY1737 XKY1734)~~
关键词 多数据流 频繁伴随模式 分布式挖掘算法 multiple data stream frequent co-occurrence pattern distributed mining algorithm
  • 相关文献

参考文献1

二级参考文献21

  • 1Agrawal R, Imielinski T, Swami A N. Mining association rules between sets of items in large databases//Proceedings of the ACM SIGMOD the International Conference on Man agement of Data. Vienna, Austria, 1993:297-216.
  • 2Agrawal R, Srikant R. Fast algorithms for mining associa tion rules//Proceedings of the VLDB the Very Large Data bases. Santiago, Chile, 1994:487-499.
  • 3Agrawal R, Srikant R. Mining sequential patterns//Proceed ings of the ICDE the International Conference on Data Engi neering. Taipei, China, 1995:3-14.
  • 4Xiong H, Tan P-N, Kumar V. Hyperclique pattern discovery. DMKD the Data Mining and Knowledge Discovery, 2006, 13(2): 219-242.
  • 5Chang J H, Lee W S. Finding recent frequent itemsets adap- tively over online data streams//Proceedings of the Interna tional Conference on Knowledge Discovery and Data Mining. Washington, DC, USA, 2003:487-492.
  • 6Li H, Lee S, Shan M. An efficient algorithm for mining fre quent itemsets over the entire history of data streams//Proceedings of the International Workshop Frequent Itemset Mining Implementations. Seattle, WA, USA, 2004:20-24.
  • 7Giannella C, Han J, Pei J, Yah X, Yu P S. Mining frequent patterns in data streams at multiple time granularities// Kargupta H, Joshi A, Sivakumar K, Yesha Y eds. Next Generation Data Mining. AAAI/MIT, 2003:191-210.
  • 8Chang J H, Lee W S. estWin: Adpatively monitoring the re- cent change of frequent itemsets over online data streams// Proceedings of the Conference on Information and Knowledge Management. New Orleans, Louisiana, USA, 2003:536-539.
  • 9Jin R, Agrawa O. An algorithm for in-core frequent itemset mining on streaming data//Proceedings of the IEEE Interna- tional Conference on Data Mining. Houston, Texas, USA, 2005, 210-217.
  • 10Mozafari B, Thakkar H, Zaniolo C. Verifying and mining frequent patterns from large windows over data streams// Proceedings of the International Conference on Data Engi neering. Cancun, Mexico, 2008:179-188.

共引文献28

同被引文献115

引证文献11

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部