期刊文献+

基于集成VPRS-RUGGA支持向量机的多模态肺部肿瘤计算机辅助诊断模型 被引量:6

A computer aided diagnosis model for multimodality lung tumor based on ensemble VPRS-RUGGA-Support Vector Machine
下载PDF
导出
摘要 针对计算机辅助诊断模型优化过程中稳定性差和早熟问题,提出基于集成VPRS-RUGGA-支持向量机的肺部肿瘤计算机辅助诊断模型。首先,引入变精度粗糙集构造属性依赖度,结合属性约简长度和惩罚函数的加权和构造适应度函数框架;其次,采用无回放余数随机选择法、均匀交叉和高斯变异算子进行遗传操作;然后,在CT、PET和PET/CT样本空间中提取肺部肿瘤ROI区域特征,构造不同的特征空间,运用VPRS-RUGGA-支持向量机模型约简和分类识别;最后,在不同的样本空间中构造支持向量机(SVM)个体分类器,采用相对多数投票法输出集成结论。实验结果表明,集成VPRS-RUGGA-SVM模型可以有效的提高泛化性能和稳定性,VPRS-RUGGA-SVM模型可有效改善早熟问题,提高模型的分类性能。 Aiming at the problem of poor stability and premature in computer aided diagnosis model optimization procedure,to propose a computer aided diagnosis model of lung tumor based on ensemble VPRS-RUGGA-Support vector machine(SVM).Firstly,a fitness function framework was constructed based on weighted sum of three objective functions of variable precision rough set attribute dependency,attribute reduction length and penalty function;Secondly,remainder stochastic sampling with replacement,uniform crossover and Gaussian mutation operator were used to carry out genetic manipulation;Then,ROI region features were extracted of lung tumor in three sample spaces of CT,PET and PET/CT to construct different feature spaces,and using the VPRS-RUGGA-SVM model to reduce and classify.Finally,the SVM individual classifier was constructed in different sample spaces,and the relative majority voting method was used to output the ensemble conclusion.The experimental results show that the ensemble VPRS-RUGGA-SVM model can effectively improve the generalization performance and stability.VPRS-RUGGA-SVM model can relieve premature and improve the classification performance.
作者 张飞飞 周涛 陆惠玲 梁蒙蒙 杨健 ZHANG Feifei;ZHOU Tao;LU Huiling;LIANG Mengmeng;YANG Jian(School of Public Health and Management,Ningxia Medical University,Yinchuan 750000,China;School of Science,Ningxia Medical University,Yinchuan 750000;Ningxia Province Key Laboratory of Intelligent Information and Big Data Processing,Yinchuan 750021)
出处 《生物医学工程研究》 2019年第1期48-53,共6页 Journal Of Biomedical Engineering Research
基金 国家自然科学基金资助项目(61561040) 宁夏高教项目(NGY2016084)
关键词 遗传算法 变精度粗糙集 支持向量机 计算机辅助诊断 特征约简 Genetic algorithm Variable precision rough set Support vector machine Computer aided diagnosis Feature reduction
  • 相关文献

参考文献8

二级参考文献91

共引文献299

同被引文献87

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部