期刊文献+

基于深度神经网络的WiFi室内定位系统设计 被引量:3

Design of a WiFi indoor Positioning System Based on the Deep Neural Network
原文传递
导出
摘要 针对地下停车场、地下矿井等用户场景定位服务的高精度需求,设计了一种基于WiFi信号的室内定位系统.系统的设计引入了深度神经网络算法,对WiFi指纹数据进行训练,得到一种室内定位模型.通过对UJIIndoorLoc数据进行实验仿真,结果表明,该室内定位模型的楼层定位准确率较传统机器学习模型提升约6%,位置定位精度较传统模型提升约7%.通过对实际应用场景进行测试,测试结果表明该室内定位模型的定位精度优于传统机器学习模型,提升约5%. For the high requirements of location service such as underground parking lots and underground mines,an indoor positioning system based on WiFi signals is designed.The indoor positioning system introduces a deep neural network algorithm to train the WiFi fingerprint data and to obtain an indoor positioning model.Through the experimental simulation of UJIIndoorLoc data,the simulation results show that floor positioning accuracy of the indoor positioning model is about6% higher than that of the traditional machine learning model,and the positional positioning accuracy is about 7% higher than that of the traditional model.Through the test of the actual application scenario,the test results show that the positioning accuracy of the indoor positioning model is better than that of the traditional machine learning model,which is about 5%.
作者 梁冀 吴彬 LIANG Ji;WU Bin(College of Physics and Electronic Engineering ,Guangxi Normal University for Nationalities ,Chongzuo 532200,China;China Mobile Communications Group Guangxi Co.Ltd.,Nanning 530000,China)
出处 《内蒙古大学学报(自然科学版)》 CAS 北大核心 2019年第2期199-204,共6页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金项目(61562006) 2015年度广西高校科研项目(KY2015LX542) 广西民族师范学院科研经费资助项目(2018YB027)
关键词 WIFI 指纹 室内定位 深度神经网络 WiFi fingerprint indoor positioning deep neural network
  • 相关文献

参考文献7

二级参考文献41

  • 1刘刚,郭漪,葛建华.MIMO-OFDM系统中的信道估计[J].华中科技大学学报(自然科学版),2005,33(9):26-29. 被引量:10
  • 2李滔,王俊普,吴秀清,唐金辉.后验概率估计及其应用:基于核Logistic回归的方法[J].模式识别与人工智能,2006,19(6):689-695. 被引量:3
  • 3Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976
  • 4Kelly K. Affinity program slashes computing times [Online], available: http://www.news.utoronto.ca/bin6/070215-2952. asp. October 25, 2007
  • 5Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology, 2002, 3(7): 1-21
  • 6Wang K J. Supplement of adaptive affinity propagation clustering [Online], available: http://www.mathworks. com/matlabcentral/fileexchange/loadAut hor .do?object Type =author&objectId=1095267, October 25, 2007
  • 7Velamuru P K, Renaut R A, Guo H B, Chen K W. Robust clustering of positron emission tomography data. In: Joint Interface CSNA. USA: 2005
  • 8Dembele D, Kastner P. Fuzzy C-means method for clustering microarray data. Bioinformatics, 2003, 19(8): 973-980
  • 9Strehl A. Relationship-based Clustering and Cluster Ensembles for High-dimensional Data Mining [Ph. D. dissertation], The University of Texas at Austin, 2002
  • 10Blake C L, Merz C J. UCI repository of machine learning databases (University of California) [Online], available:http://mlearn.ics.uci.edu/MLRepository.html, September 27, 2007

共引文献189

同被引文献31

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部