期刊文献+

基于精细复合多尺度熵与支持向量机的睡眠分期 被引量:10

Automatic Sleep Scoring Based on Refined Composite Multi-Scale Entropy and Support Vector Machine
下载PDF
导出
摘要 提出将脑电信号与眼动信号的精细复合多尺度熵作为睡眠分期依据,利用多层次支持向量机的机器学习算法对睡眠进行自动分期.利用精细复合多尺度熵对睡眠信号进行特征提取,选用脑电以及眼电通道的信号,以保证输入特性的可靠性,并通过3层支持向量机实现了睡眠的自动分期.结果表明,分类器的输入参数可由熵值曲线的变化特征来确定.基于精细复合多尺度熵的多层次支持向量机算法的睡眠分期准确率达到85.3%,与已有的分类算法相比,所提出的算法更加均衡,且整体分类效果更佳. Sleep scoring is an important research direction in medical research and clinical medicine.Traditional visual scoring method is based on scoring rules,which is a time consuming and subjective procedure.Therefore an automatic sleep staging method based on refined composite multi-scale entropy(CMSE)and multi-level support vector machine is proposed.Firstly,to ensure the reliability of the input characteristics,refined CMSE is extracted as the feature input and two channels of electroencephalogram(EEG)and electrooculogram(EOG)are used.Then a three-layer support vector machine classification scheme is applied to classify sleep stages.Specifically,the inputs of each layer are obtained according to the trend of the entropy curves.The overall accuracy of the proposed method is 85.3%.Compared with traditional methods,the classification accuracy of the proposed method is more balanced and the global performance is much better.
作者 叶仙 胡洁 田畔 戚进 车大钿 丁颖 YE Xian;HU Jie;TIAN Pan;QI Jin;CHE Datian;DING Ying(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai Children’s Hospital,Shanghai 200240,China)
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2019年第3期321-326,共6页 Journal of Shanghai Jiaotong University
基金 国家重点研发计划专项(2016YFF0101602 2016YFC0104104) 国家重大科学仪器设备开发专项(2013YQ03065105) 上海交通大学"医-工交叉研究基金"(YG2014MS12)资助项目
关键词 睡眠分期 精细 复合多尺度熵 sleep scoring refined composite multi-scale entropy(CMSE)
  • 相关文献

参考文献4

二级参考文献34

  • 1李莹,欧阳楷.自动检测儿童脑电中癫痫波的方法研究[J].中国生物医学工程学报,2005,24(5):541-545. 被引量:6
  • 2郑效来,邱天爽,赵庚申,鲍海平.一种基于EEG特征提取的癫痫棘波综合检测判决方法[J].中国生物医学工程学报,2005,24(6):696-699. 被引量:3
  • 3Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep [J]. Science, 1953, 118(3062):273-274.
  • 4Rechtsehaffen A, Bergmann BM, Everson CA, et al. Sleep deprivation in the rat: X. Integration and discussion of the findings[J]. Sleep, 1989, 12(1):68-87.
  • 5Neonates FP. Sleep Deprivation[M]. Kushida CA, ed. New York: Marcel Dekker, Inc. , 2004:121-150.
  • 6Shahar E, Whitney CW, Redline S, et al. Sleepdisordered breathing and cardiovascular disease: crosssectional results of the Sleep Heart Health Study[J]. Am J Respir Crit Care Med, 2001, 163(1):19-25.
  • 7Peppard PE, Young T, Palta M, et al. Prospective study of the association between sleep-disordered breathing and hypertension[J]. N Engl J Med, 2000, 342(19):1378- 1384.
  • 8Wang H, Parker JD, Newton GE. et ah Influence of obstructive sleep apnea on mortality in patients with heart failure [J]. J Am Coll Cardiol, 2007, 49(15):1625- 1631.
  • 9Hirshkowitz M, Kryger MH. Monitoring techniques for evaluating suspected sleep-disordered breathing [M]// Kryger MH, Roth T, Dement WC. Principles and practice of sleep medicine. 4th ed. USA:Elsevier Sauders, 2005: 1378-1393.
  • 10LEHNERTZ K.Non-linear time series analysis of in-tracranial EEG recordings in patients with epilepsy—anoverview[J].International Journal of Psychophysiology,1999,34(1):45-52.

共引文献107

同被引文献80

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部