期刊文献+

基于LZW和Huffman的混合编码压缩算法 被引量:1

A Hybrid Encoding Compression Algorithm Based on LZW and Huffman
下载PDF
导出
摘要 串表压缩(Lempel Ziv Welch,LZW)算法在词条存储过程中会重复存储已存储内容,在编码过程中造成内存浪费,而Huffman算法会占用CPU大量时间,为了克服这2种算法的缺点,提出了一种LZW-Huffman混合算法,在该算法的LZW编码阶段,采用二叉树结构存储词条,且对词条出现次数进行统计,再根据LZW压缩结果进行Huffman编码.经过测试分析,该混合算法能够节省LZW编码过程中的内存资源,压缩效果优于原始算法. The LZW algorithm stores the stored contents repeatedly in the entry storage process, which wastes memory in encoding process, and the Huffman algorithm takes up a lot of CPU time. In order to overcome the shortcomings of the said two algorithms, a hybrid LZW-Huffman algorithm is proposed in this paper. In the LZW encoding phase of the algorithm, binary tree structure is used to store entries, meanwhile the number of entries is counted, and then Huffman encoding is done according to the result of LZW compression. After testing and analysis, the hybrid algorithm can save memory resources in LZW encoding process, and the compression effect is better than the previous algorithm.
作者 崔方送 CUI Fang-song(The Information Center of Anhui Huangmei Opera Art Vocational College, Anqing Anhui 246052, China)
出处 《兰州工业学院学报》 2019年第2期54-56,共3页 Journal of Lanzhou Institute of Technology
基金 2017年安徽省高校自然科学研究重点项目(KJ2017A915) 2016年安徽省高等教育创新发展行动计划(RW_11_s34)
关键词 LZW HUFFMAN 二叉树存储结构 词条统计 混合编码 LZW Huffman binary tree storage structure entry statistics hybrid encoding
  • 相关文献

参考文献7

二级参考文献45

  • 1钟世明,邵锐,张胜,朱才连.基于位置服务系统中XML数据流压缩方法[J].武汉理工大学学报(交通科学与工程版),2006,30(1):29-32. 被引量:9
  • 2蓝波,林小竹,籍俊伟.一种改进的LZW算法在图像编码中的应用[J].计算机工程与科学,2006,28(6):55-57. 被引量:14
  • 3张凤林,刘思峰.LZW*:一个改进的LZW数据压缩算法[J].小型微型计算机系统,2006,27(10):1897-1899. 被引量:19
  • 4Hashemian R.Condensed table of Huffman coding,a new approach to efficient decoding[J].IEEE Transactions on Communications,2004,52 (1):6-8.
  • 5Sharma M.Compression using Huffman coding[J].International Journal of Computer Science and Network Security,2010,10(5):133-141.
  • 6Prathap U,Shenoy D P,Venugopal K R,et al.Wireless Sensor Networks Applications and Routing Protocols:Survey and Research Challenges[C]//Proceedings of IEEE ISCOS’12.Washington D.C.,USA:IEEE Press,2012:49-56.
  • 7Srisooksai T,Keamarungsi K,Lamsrichan P,et al.Practical Data Compression in Wireless Sensor Networks:A Survey[J].Journal of Network and Computer Applications,2012,35(1):37-59.
  • 8Yao Liang.Efficient Temporal Compression in Wireless Sensor Networks[C]//Proceedings of the 36th IEEE Conference on Local Computer Networks.Clearwater Beach,USA:IEEE Press,2011:466-474.
  • 9Marcelloni F,Vecchio M.Enabling Energy-efficient and Lossy-aware Data Compression in Wireless Sensor Networks by Multi-objective Evolutionary Optimization[J].Information Sciences,2010,180(10):1924-1941.
  • 10Zordan D,Martinez B,Vilajosana I,et al.On the Performance of Lossy Compression Schemes for Energy Constrained Sensor Networking[J].ACM Transactions on Sensor Networks,2014,11(1):15-22.

共引文献30

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部