期刊文献+

基于深度学习框架的短文本情感分析方法研究 被引量:2

Research on Emotional Analysis of Short Text Based on Deep Learning Framework
下载PDF
导出
摘要 随着电子商务的迅猛发展,越来越多的人们喜欢在网上购买商品,商品评论数据也急剧增加,这些评论中含有用户对商品的情感倾向,海量的评论加重了人工管理。本文对商品评论内容进行情感分析,有效帮助商家了解消费者对商品的认可程度,从而提高商品与服务质量。本文通过对Word2vec计算文本词向量,最后应用Keras下的LSTM对商品评论文本进行情感分类,实验验证了该方法在互联网商品评论中的有效性和准确性,取得了较好的实验结果。 With the rapid development of e-commerce,more and more people like to buy goods on the Internet,and the data of commodity reviews have increased dramatically.These reviews contain users'emotional tendencies towards commodities,and a large number of comments have aggravated the manual management.This paper makes an emotional analysis of the content of commodity reviews to help businessmen effectively understand the degree of consumer recognition of commodities,thereby improving the quality of commodities and services.This paper calculates the text word vector by Word2vec,and finally uses LSTM under Keras to classify the emotion of the comment text.The experiment verifies the validity and accuracy of this method in Internet comment,and achieves good experimental results.
作者 苏秀芝 左国才 张珏 SU Xiu-zhi;ZUO Guo-cai;ZHANG Jue(Hunan Software Vocational Institute,Xiangtan Hunan 411100)
出处 《数字技术与应用》 2019年第2期80-80,82,共2页 Digital Technology & Application
基金 湘潭市科技局科技计划项目<基于深度学习的短文本情感分析研究> 项目编号:ZJ-HZK20181005 湘潭市科技局科技计划项目<大数据挖掘安全及隐私保护关键技术研究> 项目编号:ZJ20171018 湘潭市科技局科技计划项目<基于卷积深度学习系统的图像识别方法研究> 项目编号:ZJ20171019 全国工业和信息化职业教育教学指导委员会科研课题:<现代学徒制模式下基于人脸识别技术的学习效果评价研究> 文件编号:工信行指委[2018]20号 湖南省教育厅科研项目<基于微信平台的智慧校园信息交互系统的设计与应用研究> 项目编号:18C1474
关键词 Word2vec 情感分析 深度学习 Word2vec sentiment analysis deep learning
  • 相关文献

参考文献4

二级参考文献31

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2TURNEY P D. Mining the Web for synonyms: PMI-IR versus LSA on TOEFL[ C ]//Proceedings of the 12th Eu- ropean Conference on Machine Learning. Berlin: Spring- er-Verlag, 2001:491-502.
  • 3BALAHUR A, STEINBERGER R, KABADJOV M, et al. Sentiment analysis in the news[ J]. Infrared Physics and Technology, 2014, 65:94-102.
  • 4JIANG Long, YU Mo, ZHOU Ming, et al. Target-dependent twitter sentiment classification[ C ]//Proc of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Techno- logies . 2011.
  • 5王金刚,于潇,宋丹丹,等.基于中文bag-of-opinions方法的微博情感分析[C]//NLP&CC.2012.
  • 6PAK A, PAROUBEK P. Twitter as a corpus for sentiment analysis and opinion mining [ C ]//Proc of International Conference on Lan- guage Resources and Evaluation. 2010.
  • 7TABOADA M, BROOKE J, TOFILOSKI M, et al. Lexicon-based methods for sentiment analysis [ J ]. Computational Linguistics, 2011, 37(2) : 267-307.
  • 8LUCIANO B, FENG Jun-lan. Robust sentiment detection on twitter from biased and noisy data[ C]//Proc of the 23rd International Con- ference on Computational Linguistics. 2010.
  • 9PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques [ C ]//Proc of Confe- rence on Empirical Methods in Natural Language Processing. 2002: 79- 86.
  • 10CUI Hang, MITYAL V, DATAR M. Comparative experiments on senti- ment classification for online product reviews [ C ]//Proc of the 21st National Conference on Artificial Intelligence. 2006: 1265-1270.

共引文献160

同被引文献36

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部