1Li Y M and Ishii K. The evaluation of the elasto-plasticbehavior of composite materials under biaxial stress with homogenization method [C]. Proc. of the Conference on Computational Engineering and Science, Vol.3.,1023-1026. JSCES, 1998.
2Zyczkowski M. Anisotropic yield conditions. In: Handbook of Materials Behavior Models [M]. Academic Press, 2001, Section 3.4, 155-165.
3Raabe D. Computational materials science [M]. Wiley- Vch Verlag, 1998.
4Lunch C S. On the development of multiaxial phenomenological constitutive laws for ferroelectric ceramics [J]. J. Int. Mat. Syst. Str., 1998, 9: 555-563.
5Huber J E and Fleck N A. Multiaxial electrical switching of a ferroelectric: Theory versus experiment [J]. J. Mech. Phys. Solids, 2001, 49: 785-811.
6Chen Y.H. and Lu T.J. Cracks and fracture in piezoelectrics [J]. Advances in Applied Mechanics, 2003, 39:122-215.
7Chen Y H, Lu T J. Recent developments and applications of invariant integrals [J]. Applied Mechanics Reviews, 2003, 56(3): 515-552. (see:528- 529)
8Thienel K C H, Rostasy F S. Strength of concrete subjected to high temperature and biaxial stress: Experiments and modeling [J]. Materials and Structures, 1995, 28: 575-581.
9Albertini C, Solomos G and Labibes K et al. Biaxial Hopkinson bar tensile testing of a nuclean steel. In: Proc. of Int. Conf. on Fundamental Issues and Applications of Shock-wave and High-strain-rate Phenomena (EXPLOMET 2000) [C]. Albuquerque USA, 2000, N
10Feng Xi-Qiao and Yu Shou-Wen, Damage and shakedown analysis of structures with strain hardening [J]. Int. J. Plasticity, 1995, 11(3): 237-249.