期刊文献+

滑模控制快速分段幂次趋近律设计与分析 被引量:6

Rapid piecewise power reaching law of sliding mode control design and analysis
下载PDF
导出
摘要 针对滑模变结构控制中出现的抖振问题,提出了一种分段幂次趋近律。该趋近律采用分段函数方式设计,具有较快的收敛速率、较多的调节参数,并且针对不同阶段的趋近律分开设计互不影响。理论证明了该趋近律达到滑模面时无抖振、固定时间收敛,详细推导出了收敛时间的表达式。在系统存在不确定性和外界干扰时能收敛于干扰稳定界,求出了干扰稳定界范围,给出了各参数对收敛速率和干扰稳定界的影响程度。以小卫星姿态机动控制为例,通过对比仿真实验,证明了所提趋近律的优越性。 A piecewise power reaching law of sliding mode control is proposed to solve the chattering pro- blem . The reaching law is designed by piecewise function. It has a faster convergence speed and more adjustment parameters, and the reaching law of different stages does not interfere with each other. It is proved that the system has no chattering phenomenon and can converge in fixed-time, and the convergence time is derived in detail. In the presence of uncertainties and external disturbances, the system can converge to the disturbance stability boundary, and the range is given. The influence of parameters on the reaching speed and disturbance stability boundary is given. The proposed reaching law is applied in the attitude control system of small satellite. Simulation results show the superiority of the proposed reaching law.
作者 杨新岩 廖育荣 倪淑燕 YANG Xinyan;LIAO Yurong;NI Shuyan(Department of Electronic and Optical Engineering, Space Engineering University, Beijing 101416, China;Vocational Education Center, Space Engineering University, Beijing 101416, China;Company of Postgraduate Management, Space Engineering University, Beijing 101416, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2019年第5期1127-1132,共6页 Systems Engineering and Electronics
基金 试验技术研究项目(1700050400)资助课题
关键词 分段幂次趋近律 滑模控制 趋近速率 干扰稳定界 piecewise power reaching law sliding mode control reaching speed disturbance stability boundary
  • 相关文献

参考文献4

二级参考文献44

  • 1Fridman L,Levant A. Higher order sliding modes as the natural phenomena of control theory[A].Benevento,1994.302-309.
  • 2Levant A. Higher order sliding modes,differentiation and output-feedback control[J].International Journal of Control,2003,(9/10):924-941.doi:10.1080/0020717031000099029.
  • 3Feng Y,Yu X H,Man Z H. Non-singular adaptive terminal sliding mode control of rigid manipulators[J].Automatica,2002,(12):2159-2167.doi:10.1016/S0005-1098(02)00147-4.
  • 4Yanmin Wang;Yong Feng;Xinghuo Yu.Higher-order nonsingular terminal sliding mode control of uncertain multivariable systems[A]台湾台北,2007710-714.
  • 5高为炳.变结构控制的理论及设计方法[M]北京:科学出版社,1996241-254.
  • 6Yu S,Yu X,Shirinzadeh B. Continuous finitetime control for robotic manipulators with terminal sliding mode[J].Automatica,2005,(11):1957-1964.
  • 7Marks G M,Shtessel Y B,Gratt H. Effects of high order sliding mode guidance and observers on hit-to-kill Interceptions.AIAA2005-5967[A].San Francisco CA,2005.
  • 8Shtessel Y B,Shkolnikov I A,Levant A. Guidance and control of missile interceptor using sccond-order sliding modes[J].IEEE Transactions on Aerospace and Electronic Systems,2009,(01):110-123.
  • 9Shtessel Y B,Tournes C H. Integrated higher-order sliding mode guidance and autopilot for dual-control missiles[J].AIAA Journal of Guidance,Control and Dynamics,2009,(01):79-94.
  • 10Massey T,Shtessel Y B. Continuous traditional and high order sliding modes for satellite formation control[J].AIAA J on Guidance Control and Dynamics,2005,(04):826-831.

共引文献177

同被引文献56

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部