期刊文献+

Ni-nSiO_2纳米复合电镀制备钢基超双疏表面

Preparation of Ni-nSiO_2 Super-Amphiphobic Surface on Steel Base by Nano-Composite Electroplating
下载PDF
导出
摘要 为了在钢基材料上制备超双疏表面,同时避免破坏钢基表面的物理性质,提出一种采用纳米复合电镀法在船用Q235钢材上制备Ni-nSiO_2超双疏表面的工艺。采用纳米复合电镀和液相沉积法在钢基表面构造适合的超双疏性能的微纳米双层粗糙结构。改变复合电镀参数,得到制备钢基超双疏表面的工艺参数。当电流密度为12.5A/dm^2,磁流搅拌速度为200r/min,电镀时间为50min,温度为60℃时,可制备出与水的接触角为154°,与油的接触角为151°的钢基超双疏表面。 In order to prepare super amphiphobic surface coating on steel base and to avoid damage to the physical properties of the surface, a method of constructing Ni-nSiO2 super amphiphobic surface on a Q235 steel base is proposed. Through nano composite electroplating and liquid phase deposition method, the micro nano double layer rough structure suitable for super amphiphobic performance are constructed on steel base. The preparation process parameters of the super amphiphobic surface of the steel base are obtained by changing the composite electroplating parameters. When the current density is 12.5 A/dm^2, the magnetic flow stirring speed is 200 r/min, the electroplating time is 50 minutes and the temperature is 60 ℃,the super amphiphobic surface can be prepared with water contact angle of 153° and oli contact angle of 151°.
作者 汪骥 程宏 蒋文轩 艾少华 WANG Ji;CHENG Hong;JIANG Wenxuan;AI Shaohua(School of Naval Architecture and Ocean Engineering,Dalian University of Technology,Dalian 116023,Liaoning,China;Collaborative Innovation Center for Advanced Ship and Deep Sea Exploration,Dalian 116023,Liaoning,China;State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,Liaoning,China)
出处 《造船技术》 2019年第2期43-46,85,共5页
基金 国家自然科学基金面上项目(编号:51479030)
关键词 超双疏表面 纳米复合电镀 钢基 制备工艺 super amphiphobic surface nano composite electroplating steel base preparation process
  • 相关文献

参考文献2

二级参考文献64

  • 1曲园园,陈美玲,高宏.有机硅改性丙烯酸酯/纳米SiO_2复合低表面能防污涂料[J].化工新型材料,2006,34(8):40-41. 被引量:16
  • 2Schultz M P,Swain G.W.The influence of biofilms on skin friction drag[J].Biofouling,2000,15:129-139.
  • 3Bohlander G S.Biofilm effect on drag:measurements on ships[J].Polymers in a Marine Environment,1991,16:1-4.
  • 4Al-Juhni A A,Zhang B M.Incorporation of benzoic acid and sodium benzoate into silicone coatings and subsequent leaching of the compound from the incorporated coatings[J].Progress in Organic Coatings,2006,56:135-145.
  • 5Champ M A.Published in the Proceedings of the 24th UJNR(US/Japan)Marine Facilities Panel Meeting in Hawaii,2001,November 7-8.
  • 6Schumacher J F,Cannan M L,Estes T G,et al.Engineered antifouling microtopographies-effect of feature size,geometry,and roughness on settlement of zoospores of the green alga Ulva[J].Biofouling,2007,23:55-62.
  • 7Yarbrough J C,Roiland J P,Simone J M,et al.Contact Angle Analysis,Surface Dynamics,and Biofouling Characteristics of Cross-Linkable,Random Perfluoropolyether-Based Graft Terpolymers[J].Macromolecules,2006,39:2521-2528.
  • 8Nendza M.Hazard assessment of silicone oils(polydimethylsiloxanes,PDMS)used in antifouling-J foul-release-products in the marine environment[J].Marine Pollution Bulletin,2007,54:1190-1196.
  • 9Barthlott W,Neinhuis C,Purity of the sacred lotus,or escape from contamination in biological surfaces[J].Planta,1997,20:1-8.
  • 10Young T.Experiments and calculations relative to physical optics[J].Phil.Trans.Roy.Soc,Lond.,1804,94:1-16.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部