期刊文献+

基于Copt-aiNet的污水处理过程优化控制 被引量:1

Optimal control of sewage treatment process based on Copt-aiNet
下载PDF
导出
摘要 污水处理是一个复杂的动态反应过程,针对如何确定优化控制中关键变量的动态最优设定值,使满足出水水质排放达标的同时降低运行能耗的问题,提出了一种基于人工免疫算法Copt-aiNet(组合优化的人工免疫网络)的污水处理控制策略.首先,利用Copt-aiNet确定第二分区溶解氧质量浓度和第五分区硝态氮质量浓度的最优设定值;再利用控制器跟随最优设定值,对氧传递系数和内回流流量进行控制,进而对曝气能耗和泵送能耗同时进行优化;最后,在仿真平台BSM1上进行仿真实验,结果验证了本文控制策略的有效性,可以在保证出水水质达标的前提下有效降低能耗. Sewage treatment is a complex dynamic reactive process. Aimed at the problem of the determination of dynamic optimal setting value as a key variable in optimized control and the reduction of operational energy consumption while the effluent discharge standards are satisfied, a sewage treatment control strategy is proposed based on artificial immune algorithm Copt-aiNet (artificial immune network for combinatorial optimization). Firstly, the optimum setting values of the mass concentration of dissolved oxygen in second subzone and that of nitrate in fifth subzone are determined with Copt-aiNet. Then the oxygen transfer coefficient and internal reflux flow are controlled by means of following up the optimal setting value with the controller, thus the pumping energy and aerating energy are optimized at the same time. Finally, the simulation experiments are carried out on the simulation platform BSM1 and their results have verified the effectiveness of the proposed control strategy, which can reduce the energy consumption under the premise of ensuring the effluent quality.
作者 赵小强 杨文君 ZHAO Xiao-qiang;YANG Wen-jun(College of Electrical and Information Engineering,Lanzhou Univ.of Tech.,Lanzhou730050,China;Key Laboratory of Gansu Advanced Control for Industrial Processes,Lanzhou 730050,China;National Experimental Teaching Center of Electrical and Control Engineering,Lanzhou Univ.of Tech.,Lanzhou730050,China)
出处 《兰州理工大学学报》 CAS 北大核心 2019年第2期84-89,共6页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(61763029) 甘肃省基础研究创新群体基金(1506RJIA031)
关键词 污水处理 优化控制 人工免疫算法 基准仿真模型BSM1 sewage treatment optimized control artificial immune algorithm benchmark simulation model BSM1
  • 相关文献

参考文献3

二级参考文献18

共引文献55

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部