期刊文献+

基于相似背景与HSV空间颜色直方图的目标跟踪 被引量:8

Object Tracking Based on Similar Background and Color Histogram in HSV Color Space
下载PDF
导出
摘要 针对相关滤波器的存在边界效应问题,提出了一种基于相似背景与HSV空间颜色直方图的目标跟踪算法。通过最佳伙伴相似原理(Best-Buddies Similarity),在真实背景中选取与目标相似度较高的相似背景作为负样本训练相关滤波器,降低边界效应。并将HSV空间颜色直方图与贝叶斯分类器结合对目标进行颜色跟踪,利用颜色直方图信息提高复杂背景下目标跟踪的成功率。在OTB-50和OTB-100中挑选16个视频进行实验,与当前主流的6种跟踪算法对比,本文算法的成功率得分0.593,准确率得分0.467,优于6种主流的目标跟踪算法,能够有效提高目标跟踪的成功率和准确率,并且具有较好的实时性。 In order to solve the problem of boundary effects of the correlation filter, an object tracking algorithm is proposed based on similar background and color histogram in HSV color space. By using the Best-Buddies Similarity principle, similar backgrounds with higher similarity to the target are selected in the real background as the negative sample to train the correlation filter, so as to reduce the boundary effect. In order to improve the success rate of object tracking in complicated environment, the color histogram in HSV color space is combined with Bayes classifier for color tracking. Experiments are carried out on 16 videos selected from OTB-50 and OTB-100, and the results are compared with that of the current six tracking algorithms. The success rate and accuracy of the proposed algorithm are 0. 593 and 0. 467 respectively,which is superior to that of the other six algorithms. The proposed algorithm can effectively improve the success rate and accuracy of object tracking and has good real-time performance.
作者 张宇阳 ZHANG Yu-yang(Shanghai University of Engineering Science,Shanghai 201600,China)
出处 《电光与控制》 CSCD 北大核心 2019年第4期100-105,共6页 Electronics Optics & Control
基金 上海市科委基金项目(16dz1206002) 上海工程技术大学研究生创新项目基金(E3-0903-17-01032)
关键词 相关滤波器 边界效应 相似背景 贝叶斯分类器 HSV空间颜色直方图 correlation filter boundary effect similar background Bayes classifier color histogram in HSV color space
  • 相关文献

参考文献5

二级参考文献50

  • 1闫利,赵展,谢洪.一种基于形状特征的高分辨率影像飞机提取方法[J].遥感信息,2013,28(6):3-6. 被引量:1
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 4KURIEN T. Framework for integrated tracking and identi- fication of multiple targets [ C ]//Proceedings of Digital Avionics Systems Conference, Burlington, MA, US : IEEE/ AIAA, 1991:362-366.
  • 5MILLER M I, SRIVASTAVA A, GRENANDER U. Condi- tional-mean estimation via jump-diffusion process in mul- tiple target tracking/recognition [J]. IEEE Transactions on Signal Processing, 1995, 43 (11 ) :2678-2690.
  • 6HERMAN S M. A particle filter approach to joint passive radar tracking and target classification [ D ]. US : Graduate College of the University of Illinois, 2002.
  • 7HERMAN S, MOULIN P. A particle filtering approach to FM-band passive radar tracking and automatic target recognition [C]//Proceedings of the IEEE aerospace conference, Big Sky Montana:IEEE, 2002:1789-1808.
  • 8LANTERMAN A D. Tracking and recognition of airborne targets via commercial television and FM radio signals [ C ]//Proceedings of SPIE Acquisition, Tracking, and Pointing, Orlando: SPIE, 1999, 3692 : 189-198.
  • 9CHALLA S, PULFORD G W. Joint target tracking and classification using radar and ESM sensors [ J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37 (3) : 1039-1055.
  • 10CUTAIA N J, O'SULLIVAN J A. Automatic target recogni- tion using kinematic priors[ C]//Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, FL:IEEE, 1994:3303-3307.

共引文献18

同被引文献69

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部