摘要
针对相关滤波器的存在边界效应问题,提出了一种基于相似背景与HSV空间颜色直方图的目标跟踪算法。通过最佳伙伴相似原理(Best-Buddies Similarity),在真实背景中选取与目标相似度较高的相似背景作为负样本训练相关滤波器,降低边界效应。并将HSV空间颜色直方图与贝叶斯分类器结合对目标进行颜色跟踪,利用颜色直方图信息提高复杂背景下目标跟踪的成功率。在OTB-50和OTB-100中挑选16个视频进行实验,与当前主流的6种跟踪算法对比,本文算法的成功率得分0.593,准确率得分0.467,优于6种主流的目标跟踪算法,能够有效提高目标跟踪的成功率和准确率,并且具有较好的实时性。
In order to solve the problem of boundary effects of the correlation filter, an object tracking algorithm is proposed based on similar background and color histogram in HSV color space. By using the Best-Buddies Similarity principle, similar backgrounds with higher similarity to the target are selected in the real background as the negative sample to train the correlation filter, so as to reduce the boundary effect. In order to improve the success rate of object tracking in complicated environment, the color histogram in HSV color space is combined with Bayes classifier for color tracking. Experiments are carried out on 16 videos selected from OTB-50 and OTB-100, and the results are compared with that of the current six tracking algorithms. The success rate and accuracy of the proposed algorithm are 0. 593 and 0. 467 respectively,which is superior to that of the other six algorithms. The proposed algorithm can effectively improve the success rate and accuracy of object tracking and has good real-time performance.
作者
张宇阳
ZHANG Yu-yang(Shanghai University of Engineering Science,Shanghai 201600,China)
出处
《电光与控制》
CSCD
北大核心
2019年第4期100-105,共6页
Electronics Optics & Control
基金
上海市科委基金项目(16dz1206002)
上海工程技术大学研究生创新项目基金(E3-0903-17-01032)