摘要
在探索出制取Dy-Cu中间合金方法的基础上,为了进一步优化电解过程的工艺参数,采用阿基米德法对LiF-DyF_3-Dy_2O_3-Cu_2O熔盐体系的密度进行了研究。考察了温度、单一氧化物(Dy_2O_3或Cu_2O)以及混合氧化物(Dy_2O_3与Cu_2O)对熔盐体系密度的影响,并通过最小二乘法对数据进行了拟合,建立了温度、 Dy_2O_3含量、 Cu_2O含量与熔盐密度之间的数学回归方程。研究结果表明,熔盐体系的密度随温度的升高而线性下降,而随单一氧化物加入量、混合氧化物加入量及混合氧化中w_(Dy_2O_3)与w_(Cu_2O)的比值增大而增大。在温度为910~1030℃,w_(Dy_2O_3)为0%~2.0%(质量分数),w_(Cu_2O)为0%~2.0%范围内,温度(t), Dy_2O_3加入量w_(Dy_2O_3), Cu_2O加入量w_(Cu_2O)与熔盐密度(ρ)的关系可以表示为:ρ=-7.01813-0.00163t+0.01832 w_(Dy_2O_3)+0.10289w_(Cu_2O)。从熔体密度角度来看,在氧化物的加入量满足2.0%≤w_(Dy_2O_3)+w_(Cu_2O)≤3.0%,w_(Dy_2O_3)∶w_(Cu_2O)<3∶2,电解温度控制在960~980℃的条件下,电解LiF-DyF_3-Dy_2O_3-Cu_2O熔盐制取Dy-Cu合金较为理想。
In order to further optimize the electrolysis process parameters for preparing Dy-Cu intermediate alloy in LiF-DyF3-Dy2O3-Cu2O molten salt,the density of LiF-DyF3-Dy2O3-Cu2O molten salt system was determined by Archimedes method.The effects of temperature,single oxide(Dy2O3 or Cu2O)and mixed oxides(Dy2O3 and Cu2O)on the density of molten salt system were investigated.The mathematical model of density was established by least-squares fitting data.The regression equation between temperature,Dy2O3 content,Cu2O content and molten salt density was determined.The results showed that the density of molten salt system decreases regularly with the increase of temperature,and increases with the addition of a single oxide,the addition of mixed oxides and the ratio of w Dy2O3 to w Cu2O in mixed oxidation.The relationship among temperature(t),Dy2O3 addition amount w Dy2O3,Cu2O addition amount w Cu2O and molten salt density(ρ)could be expressed asρ=-7.01813-0.00163t+0.01832 w Dy2O3+0.10289w Cu2O at a temperature of 910 to 1030℃,w Dy2O3 of 0% to 2.0%(mass fraction),and w Cu2O of 0% to 2.0%(mass fraction).From the perspective of melt density,the optimal electrolysis conditions for preparing Dy-Cu alloy in LiF-DyF 3-Dy2O3-Cu2O molten salt were 2.0%≤w Dy2O3+w Cu2O≤3.0%(mass fraction),w Dy2O3∶w Cu2O<3∶2,the electrolysis temperature was in the range of 960 to 980℃.
作者
廖春发
陈淑梅
王旭
蔡伯清
焦芸芬
曾颜亮
Liao Chunfa;Chen Shumei;Wang Xu;Cai Boqing;Jiao Yunfen;Zeng Yanliang(Institute of Metallurgy and Chemical Engineering,Jiangxi University of Science and Technology,Ganzhou341000,China;Ganzhou Nonferrous Metallurgy Research Institute,Ganzhou 341000,China)
出处
《稀有金属》
EI
CAS
CSCD
北大核心
2019年第3期296-302,共7页
Chinese Journal of Rare Metals
基金
国家自然科学基金项目(5167041092
51564015)
江西省自然科学基金项目(20161BAB206142)
江西理工大学优秀博士学位论文培育项目(YB2017007)资助