期刊文献+

基于ITE-KSA结构的科学数据素养能力指标体系研究 被引量:10

Research on the Construction of the Scientific Data Literacy Competency Index System Based on ITE-KSA
下载PDF
导出
摘要 科学数据素养能力指标体系是评价科研人员管理和利用数据进行科学研究与创新能力的重要依据,是探析科学数据素养教育现状以及分析数据素养教育对策与机制的重要前提和基础。文章基于科学性与导向性、可操作性、独立性与灵活性、前瞻性与可持续性原则建立了科学数据素养能力指标体系,提出从"个人"(individual)、"团队"(team)和"数据生态"(data ecology)(简称ITE)三个维度构建18个一级指标、47个二级指标,并且从"知识"(knowledge)、"技能"(skill)、"态度"(attitude)(简称KSA)三个层面对每个指标内容进行描述与表征。基于ITE-KSA的能力指标体系呈现多维立体结构,既有纵向的类属维度和能力域层级划分,又有横向的具体能力要素分解,使得科学数据素养能力指标体系在指导科学数据素养能力评价、相关课程开发与教育实践等方面具有很强的实用性和可操作性。 The scientific data literacy competency index system is an important basis for evaluating the ability of scientific researchers to manage and utilize data for scientific research and innovation.It is an important premise and basis for analyzing the status quo of scientific data literacy education and analyzing data literacy education strategies and mechanisms.Based on the principles of science,orientation,operability,independence,flexibility,foresight,and sustainability,this paper established the scientific data literacy competency index system,and put forward 18 first-level indexes and 47 second-level indexes from three dimensions of"individual","team"and"data ecology"(ITE for short).It also described and characterized each index content from three levels:"knowledge","skill",and"attitude"(KSA for short).The index system based on ITE-KSA presents a multidimensional structure,which has both vertical category and capability domain hierarchy,as well as horizontal specific capacity factor decomposition.This makes the scientific data literacy competency index system very practical and operable in guiding the evaluation of scientific data literacy,related curriculum development and educational practice.
出处 《图书与情报》 CSSCI 北大核心 2019年第1期115-124,共10页 Library & Information
关键词 科学数据素养 能力 指标体系 个人 团队 数据生态 scientific data literacy competency index system individual team data ecology
  • 相关文献

二级参考文献100

  • 1科学数据共享工程门户网站.国家科技计划项目科学数据汇交暂行办法(草案)[EB/OL].[2010-02-05].http://www.sciencedata.cn/fagui.php.
  • 2科学数据共享工程[EB/OL].[2012-09-10].http://www.sciencedata.cn/index.php.
  • 3Schneider R. Worldwide Commonalities and Challenges in Information Literacy Research and Practice. Switzerland: Springer, 2013 : 130-140.
  • 4Mandinach E, Gummer E. A Systemic View of Implementing Data Literacy in Educator Preparation. Educational Researcher, 2013, 42 ( 1 ) : 30-37.
  • 5百度百科.数据素养.[2015-06-08].htlp://baike.baidu.com/link?url=AciQr 1 vRmlbJvFfRx7nAj HitE2BjEzhwPCVNpYT7q xlvOPqiDwDUDxoMmIWiQp2RzCXB90Tujv6PpGU29KYi9q.
  • 6Vahey P, Rafanan K, Patton C et al. A Cross-Disciplinary Approach to Teaching Data Literacy and Proportionality. Educational Studies in Mathematics, 2012, 81 ( 2 ) : 179-205.
  • 7Carlson J, Fosmire M, Miller C et al. Determining Data Information Literacy Needs: A Study of Students and Research Faculty. Portal-Libraries and the Academy, 201 l, 11 ( 2 ) : 629-657.
  • 8Jian Q, D'Lgnazio J. Lessons Learned From a Two- Year Experience in Science Data Literacy Education. IATUL Proceedings, New Series, 2010 : 10.
  • 9Stephenson E, Caravello P. Incorporating Data Literacy into Undergraduate Information Literacy Programs in the Social Sciences: A Pilot Projt. Reference Services Review, 2007, 35 ( 4 ) : 525-540.
  • 10Harris C, Berkowitz A, Alvarado A. Data Explorations in Ecology: Salt Pollution as a Case Study for Teaching Data Literacy. American Biology Teacher, 2012, 74 ( 7 ) : 479-484.

共引文献216

同被引文献266

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部