期刊文献+

Characterization of molten 2LiF–BeF_2 salt impregnated into graphite matrix of fuel elements for thorium molten salt reactor 被引量:4

Characterization of molten 2LiF–BeF_2 salt impregnated into graphite matrix of fuel elements for thorium molten salt reactor
下载PDF
导出
摘要 The impregnation behavior of molten 2LiF–BeF_2(FLiBe) salt into a graphite matrix of fuel elements for a solid fuel thorium molten salt reactor(TMSR-SF) at pressures varying from 0.4 to 1.0 MPa was studied by mercury intrusion, molten salt impregnation, X-ray diffraction, and scanning electron microscopy techniques.It was found that the entrance pore diameter of the graphite matrix is less than 1.0 μm and the contact angle is about 135°. The threshold impregnation pressure was found to be around 0.6 MPa experimentally, consistent with the predicted value of 0.57 MPa by the Washburn equation. With the increase of pressure from 0.6 to 1.0 MPa, the average weight gain of the matrix increased from 3.05 to 10.48%,corresponding to an impregnation volume increase from 2.74 to 9.40%. The diffraction patterns of FLiBe are found in matrices with high impregnation pressures(0.8 MPa and1.0 MPa). The FLiBe with sizes varying from tens of nanometers to a micrometer mainly occupies the open pores in the graphite matrix. The graphite matrix could inhibit the impregnation of the molten salt in the TMSR-SF with a maximum operation pressure of less than 0.5 MPa. The impregnation behavior of molten 2LiF–BeF_2(FLiBe) salt into a graphite matrix of fuel elements for a solid fuel thorium molten salt reactor(TMSR-SF) at pressures varying from 0.4 to 1.0 MPa was studied by mercury intrusion, molten salt impregnation, X-ray diffraction, and scanning electron microscopy techniques.It was found that the entrance pore diameter of the graphite matrix is less than 1.0 μm and the contact angle is about 135°. The threshold impregnation pressure was found to be around 0.6 MPa experimentally, consistent with the predicted value of 0.57 MPa by the Washburn equation. With the increase of pressure from 0.6 to 1.0 MPa, the average weight gain of the matrix increased from 3.05 to 10.48%,corresponding to an impregnation volume increase from 2.74 to 9.40%. The diffraction patterns of FLiBe are found in matrices with high impregnation pressures(0.8 MPa and1.0 MPa). The FLiBe with sizes varying from tens of nanometers to a micrometer mainly occupies the open pores in the graphite matrix. The graphite matrix could inhibit the impregnation of the molten salt in the TMSR-SF with a maximum operation pressure of less than 0.5 MPa.
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第5期32-39,共8页 核技术(英文)
基金 supported by the Thorium Molten Salt Reactor Nuclear Energy System under the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA02030000) the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016) the State Key Laboratory of Particle Detection and Electronics(No.SKLPDE-KF-201811)
关键词 Keywords MOLTEN SALT reactor FLIBE Impregnation GRAPHITE MATRIX Molten salt reactor FLiBe Impregnation Graphite matrix
  • 相关文献

参考文献1

二级参考文献1

共引文献1

同被引文献15

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部