期刊文献+

带恐惧因子和强Allee效应的捕食者-食饵扩散模型的Hopf分支 被引量:9

Hopf bifurcation of a diffusive predator-prey model with fear factors and strong Allee effects
下载PDF
导出
摘要 研究一类带恐惧因子和强Allee效应的捕食者-食饵扩散模型的Hopf分支问题.首先分析非负平衡点的局部渐近稳定性,然后以捕获者死亡率作为Hopf分支参数,给出了扩散模型Hopf分支存在的条件;利用中心流形定理和规范型理论,讨论了扩散系统Hopf分支的方向及分支周期解的稳定性.最后利用数值模拟验证了所得结论. The Hopf bifurcation of a diffusive predator-prey model with fear factors and strong Allee effects is considered.Firstly,the local asymptotic stability of the non-negative equilibrium points is given.Secondly,by choosing the predator s natural growth rate as a bifurcation parameter,the existence conditions of Hopf bifurcation for the model are obtained.Next,the Hopf branch direction of diffusive system and the conditions for the stability of periodic solutions are discussed by using the center manifold theory and the normal form method.Finally,some numerical simulations are presented to verify these theoretical results.
作者 伏升茂 苏发儒 FU Sheng-mao;SU Fa-ru(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu,China)
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2019年第3期14-20,共7页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11361055 11761063)
关键词 捕食者-食饵扩散模型 恐惧因子 ALLEE效应 HOPF分支 周期解 稳定性 predator-prey diffusive model fear factors Allee effects Hopf bifurcation periodic solution stability
  • 相关文献

同被引文献29

引证文献9

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部