期刊文献+

基于自适应池化的双路卷积神经网络图像分类算法 被引量:13

Image classification algorithm of dual-channel convolutional neural networks based on adaptive pooling
下载PDF
导出
摘要 针对相同构造的卷积神经网络输入同样的数据集也会提取到不同特征的情况,为利用该差异挖掘图像的深层特征,提出一种双路卷积神经网络模型的图像分类算法。在优化池化组合的基础上,在另一子网络中引入自适应池化丰富差异特征,提高特征表达层次;根据互补测量函数测量子网络间的特征差异的互补性,以此优化损失函数反向传播微调模型权重,提高图像分类的精准度。在MNIST和CIFAR-10图像集上的实验结果表明,基于自适应池化的双路卷积神经网络的分类能力优于现有的深度卷积神经网络。 Aiming at the situation that using the convolutional neural network with the same structured convolutional neural network inputting the same data set still extracts different features,to exploit this difference to mine the deep features of the image,a dual-channel convolution neural network model of image classification algorithm was presented.On the basis of optimizing the pooling combination,introducing adaptive pooling into another sub-network to enrich the characteristics of differences and improve the level of feature expression.The complementarity of feature differences was measured between sub-networks according to the complementary measurement function,so as to optimize the loss function,which fine-tuned the model weights by back propagation to improve the accuracy of image classification.Experimental results on the MNIST and CIFAR-10 image sets show that the dual-channel convolutional neural network based on adaptive convolution has better classification ability than the existing deep convolutional neural networks.
作者 高子翔 张宝华 吕晓琪 谷宇 GAO Zi-xiang;ZHANG Bao-hua;LYU Xiao-qi;GU Yu(School of Information Engineering,Inner Mongolia University of Science and Technology,Baotou 014010,China;College of Information Engineering,Inner Mongolia University of Technology,Hohhot 010051,China)
出处 《计算机工程与设计》 北大核心 2019年第5期1334-1338,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61663036 61261028) 国家海洋局海洋遥测工程技术研究中心创新青年基金项目(2014003) 内蒙古自治区高等学校"青年科技英才支持计划"青年科技骨干基金项目(NJYT-14-B11) 内蒙古自然科学基金项目(2014MS0610) 内蒙古自治区高等学校科学研究基金项目(NJZY145)
关键词 图像分类 卷积神经网络 自适应池化 特征互补性 子网络 image classification convolutional neural networks adaptive pooling feature complementarity sub-network
  • 相关文献

参考文献7

二级参考文献36

  • 1Saxena A, Chung S H, Ng A Y. 3-D depth reconstruction from a single still image[J]. International Journal of Computer Vision, 2008, 76(1): 53-69.
  • 2Horn B K P. Obtaining shape from shading information[M]. New York: MIT Press, 1989: 123-171.
  • 3Saxena A, Chung S H, Ng A Y. Learning depth from single monocular images [C]. Advances in Neural Information Processing Systems, 2005: 1161-1168.
  • 4Saxena A, Sun M, Ng A Y. Make 3D: Learning 3D scene structure from a single still image[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(5): 824-840.
  • 5Saxena A, Schulte J, Ng A Y. Depth estimation using monocular and stereo cues [C] . International Joint Conference on Artificial Intelligence, 2007: 2197-2203.
  • 6Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C] Advances in Neural Information Processing Systems, 2012 : 1106-1114.
  • 7Karpathy A, Toderici G, Shetty S, et ai. Large-scale video classification with convolutional neural networks[C] . IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1725-1732.
  • 8Liang M, Hu X. Recurrent convolutional neural network for object recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3367-3375.
  • 9Lee S C, Nevatia R. Extraction and integration of window in a 3D building model from ground view images [C]. IEEE Computer Conference on Computer Vision and Pattern Recognition, 2004: 113-120.
  • 10Liu L, Yu G, Zokai S, et al. Multiview geometry for texture mapping 2D images onto 3D range data [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2006, 2: 2293-2300.

共引文献281

同被引文献105

引证文献13

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部