期刊文献+

基于改进CNN的铝轮毂背腔字符识别 被引量:7

Recognition of Characters in Aluminum Wheel Back Cavity Based on Improved Convolution Neural Network
下载PDF
导出
摘要 铝轮毂背腔字符分辨率较低、背景噪声较大,对其进行识别时不易提取几何特征和纹理特征。为此,提出一种基于改进卷积神经网络(CNN)的字符识别方法。在原始CNN的基础上引入改进的inception结构对网络构架进行优化,以提升计算资源的利用率,并在保持网络计算资源不变的前提下增加网络的宽度和深度,降低字符识别时间。实验结果表明,该方法训练准确率达99%以上,识别准确率达98.5%,识别效果优于支持向量机、BP神经网络等方法。 It is difficult to extract geometric and texture features when recognizing the characters in the aluminium wheel back cavity because of its low resolution and strong background noise.Therefore,a character recognition method based on improved Convolution Neural Network(CNN) is proposed.On the basis of the original CNN,an improved inception structure is introduced to optimize the network architecture to improve the utilization of computing resources,increase the width and depth of the network and reduce the time of character recognition while keeping the network computing resources unchanged.Experimental results show that the training accuracy of this method is over 99 % and the recognition accuracy is 98.5 %,which is better than that of Support Vector Machine(SVM) and BP neural network.
作者 程淑红 周斌 CHENG Shuhong;ZHOU Bin(School of Electrical Engineering,Yanshan University,Qinhuangdao,Hebei 066000,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第5期182-186,共5页 Computer Engineering
基金 国家自然科学基金(61601400) 河北省博士后择优项目(B2016003027)
关键词 卷积神经网络 inception结构 网络构架 背腔字符 损失函数优化 Convolution Neural Network(CNN) inception structure network architecture back cavity character optimization of loss function
  • 相关文献

参考文献6

二级参考文献38

  • 1王陈飞,肖诗斌.基于SVM的图像分类研究[J].计算机与数字工程,2006,34(8):74-76. 被引量:7
  • 2LIM T Y,RATNAM M M,KHALID M A.Automatic classification of weld defects using simulated data and an MLP neural network[J].Insight,2007,49 (3):154-159.
  • 3VILAR R,ZAPATA J,RUIZ R.An automatic system of classification of weld defects in radiographic images[J].NDT and E International,2009,42(5):467-476.
  • 4ZAPATA J,VILAR R,RUIZ R.An adaptive-networkbased fuzzy inference system for classification of welding defects[J].NDT & E International,2010,43 (3):191-199.
  • 5ZAPATA J,VILAR R,RUIZ R.Performance evaluation of an automatic inspection system of weld defects in radiographic images based on neuroclassifiers[J].Expert Systems with Applications,2011,38 (7):8812-8824.
  • 6MIRAPEIX J,GARCíA-ALLENDE P B,COBO A,et al.Real-time arc-welding defect detection and classification with principal component analysis and artificial neural networks[J].NDT & E International,2007,40 (4):315-323.
  • 7ALAKNANDA,ANAND R S,KUMAR P,et al.Flaw detection in radiographic weldment images using morpho logical watershed segmentation technique[J].NDT&E International,2009,42(1):2-8.
  • 8VINCENT P,LAROCHELLE H,LAJOIE I,et al.Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J].Journal of Machine Learning Research,2010,11 (12):3371-3408.
  • 9BENGIO Y.Learning deep architectures for AI[J].Foundations and Trends in Machine Learning,2009,2 (1):1-127.
  • 10申清明,高建民,李成.焊缝缺陷类型识别方法的研究[J].西安交通大学学报,2010,44(7):100-103. 被引量:18

共引文献117

同被引文献44

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部