期刊文献+

深度学习在医学图像分析中的应用研究综述 被引量:3

A Review of the Researches on the Application of Deep Learning in Medical Image Analysis
下载PDF
导出
摘要 [目的/意义]介绍深度学习的概念、发展过程以及三种典型深度学习模型:卷积神经网络(CNN)、深度信念网络(DBN)和堆叠自动编码器(SAE),并梳理三种模型的发展历程,对深度学习在医学图像分析中的应用研究状况进行综述。[方法/过程]通过文献调研对深度学习模型在医学图像分析领域的诸多应用进行整理,并在此基础上突出一些关键的应用领域,进而讨论深度学习基本模型存在的问题。[结果/结论 ]深度学习模型目前存在五个问题:模型结构单一、训练方式仍需改进、训练时间过长、对无标记数据添加标签、克服对抗样本,在实际工作中应提出相关解决措施。从跨组织合作、大的图像数据集、深度学习方法的进步三个方面对深度学习在医学图像分析领域的发展前景进行展望。 [Purpose/significance]This paper introduces the concept and development process of deep learning and three typical deep learning models:convolutional neural network(CNN),deep belief network(DBN)and stacked automatic encoder(SAE).[Method/process] Based on the literature research,this paper sorts out the application of deep learning model in the field of medical image analysis,highlights some key application fields on this basis,and then discusses the problems existing in the basic model of deep learning.[Result/conclusion] At present,the deep learning model has five problems:the model structure is simple,the training method still needs to be improved,the training time is too long,the non-label data are labeled,and the counter samples are removed,all of which need to be solved in practice.Finally,the authors predict the future of deep learning in the field of medical image analysis in terms of cross-organizational cooperation,large image data sets and the progress of deep learning methods.
作者 黄江珊 王秀红 Huang Jiangshan;Wang Xiuhong(Institute of Science and Technology Information,Jiangsu University,Zhenjiang 212013,China)
出处 《图书情报研究》 2019年第2期92-98,112,共8页 Library and Information Studies
关键词 深度学习 医学图像分析 卷积神经网络 深度信念网络 堆叠自动编码器 deep learning medical image analysis convolutional neural network deep belief network stacked automatic encoder
  • 相关文献

参考文献3

二级参考文献91

  • 1石平,雷增杰,蓝宗富,朱世杰.如何快速有效地获取网上病理学图像资源[J].西北医学教育,2007,15(2):219-221. 被引量:4
  • 2KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105.
  • 3DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42.
  • 4ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966.
  • 5BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473.
  • 6ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901.
  • 7SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].CoRR,2013:abs/1312.6229.
  • 8RUSSAKOVSKY O,DENG J,SU H,et al.Image Net large scale visual recognition challenge[J].CoRR,2014:abs/1409.0575.
  • 9LIN M,CHEN Q,YAN S.Network in network[J].CoRR,2013:abs/1312.4400.
  • 10SUN Y,WANG X,TANG X.Deep learning face representation from predicting 10,000 classes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1891-1898.

共引文献454

同被引文献22

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部