期刊文献+

局部差分隐私约束的关联属性不变后随机响应扰动 被引量:8

Invariant Post-Random Response Perturbation for Correlated Attributes Under Local Differential Privacy Constraint
下载PDF
导出
摘要 本文研究敏感属性与部分准标识符属性存在相关时,如何有效减小重构攻击导致的隐私泄漏风险.首先,用互信息理论寻找原始数据集中对敏感属性具有强依赖关系的准标识符属性,为精确扰动数据属性提供理论依据;其次,针对关联属性和非关联属性,应用不变后随机响应方法分别对某个数据属性或者属性之间的组合进行扰动,使之满足局部ε-差分隐私要求,并理论分析后数据扰动对隐私泄露概率和数据效用的影响;最后,实验验证所提算法的有效性和处理增量数据的能力,理论分析了数据结果.由实验结果可知,算法可以更好地达到数据效用和隐私保护的平衡. We investigate in this paper how to effectively reduce the risk of privacy leakage caused by refactoring attacks when the sensitive attributes and some quasi-identifier attributes are correlated.Firstly,the mutual information theory is used to find the quasi-identifier attributes which have strong dependence on the sensitive attributes in the original dataset,which provides a theoretical basis for accurately perturbing the data attributes.Secondly,for the correlated attributes and the non-correlated attributes,the invariant random response method is applied to perturb a certain data attribute or a combination of data attributes to satisfy the local ε-differential privacy requirement.Theoretical analysis of the impact of data perturbations on privacy leakage probability and data utility is also conducted.Finally,the experiment verifies the effectiveness of the proposed algorithm and its ability to process incremental data.The experimental results demonstrate that the algorithm can achieve a better balance between data utility and privacy protection.
作者 杨高明 朱海明 方贤进 苏树智 YANG Gao-ming;ZHU Hai-ming;FANG Xian-jin;SU Shu-zhi(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan,Anhui 232001,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第5期1079-1085,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61572034 No.61806006) 安徽省高校自然科学基金(No.KJ2018A0083 No.KJ2014A061) 安徽省重大科技专项(No.18030901025)
关键词 局部差分隐私 不变后随机响应 数据重构 数据扰动 隐私保护 local differential privacy invariant post-random response data reconstruction data perturbation privacy protection
  • 相关文献

参考文献1

二级参考文献24

  • 1彭京,唐常杰,程温泉,石葆梅,乔少杰.一种基于层次距离计算的聚类算法[J].计算机学报,2007,30(5):786-795. 被引量:11
  • 2Saygin Y,Verykios V S,Elmagarmid A K.Privacy preserving association rule mining[A].Proceedings of the 12th International Workshop on Research Issues in Data Engineering(RIDE)[C].San Jose,USA:IEEE Computer Society,2002.151-158.
  • 3Aggarwal C C,Yu P S.A condensation approach to privacy preserving data mining[A].Proceedings of the 9th International Conference on Extending Database Technology(EDBT)[C].Heraklion,Greece:Springer,2004.183-199.
  • 4Yao A C.How to generate and exchange secrets[A].Proceedings of the 27th IEEE Symposium on Foundations of Computer Science(FOCS)[C].Toronto,Canada:IEEE Press,1986.162-167.
  • 5Clifton C,Kantarcioglou M,Lin X,Zhu M Y.Tools for privacy preserving distributed data mining[J].ACM SIGKDD Explorations,2002,4(2):28-34.
  • 6Laszlo M,Mukherjee S.Minimum spanning tree partitioning algorithm for microaggregation[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(7):902-911.
  • 7Solanas A,Martinez-Balleste A,Domingo-Ferrer J,et al.A 2d-tree-based blocking method for microaggregating very large data sets[A].Proc of the First International Conference on Availability,Reliability and Security[C].Vienna,Australia:IEEE Press,2006.922-928.
  • 8Domingo-Ferrer J.Microaggregation for database and location privacy[A].Proc of Next Generation Information Technologies and Systems[C].Kibbutz,Shefayim,Israel:Springer-Verlag,2006.106-116.
  • 9Truta T,Vinay B.Privacy protection:p-sensitive k-anonymity property[A].Proc of the 22nd International Conference on Data Engineering Work Shops[C].Washington DC,USA:IEEE Computer Society,2006.94-103.
  • 10Sweeney L.k-anonymity:A model for protecting privacy[J].International Journal on Uncertainty,Fuzziness and Knowledge-Based Systems,2002,10(5):557-570.

共引文献13

同被引文献17

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部