期刊文献+

基于LSTM的股票价格预测建模与分析 被引量:77

Modeling and Analysis of Stock Price Forecast Based on LSTM
下载PDF
导出
摘要 股价波动是一个高度复杂的非线性系统,其股票的调整不是按照均匀的时间过程推进,具有自身的推进过程。结合LSTM(Long Short-Term Memory)递归神经网络的特性和股票市场的特点,对数据进行插值、小波降噪、归一化等预处理操作后,推送到搭建的不同LSTM层数与相同层数下不同隐藏神经元个数的LSTM网络模型中进行训练与测试。对比评价指标与预测效果找到适宜的LSTM层数与隐藏神经元个数,提高了预测准确率约30%。测试结果表明,该模型计算复杂度小,预测准确率有所提高,不仅能在股票投资前对预测股票走势提供有益的参考,还能帮助投资者在对实际股价有了进一步的认知后构建合适的股票投资策略。 Stock price volatility is a highly complex nonlinear system. The adjustment of stocks is not based on a uniform time process and has its own process of advancement. Combining the characteristics of LSTM(Long Short-Term Memory)recurrent neural network and the characteristics of stock market, and after preprocessing operations such as interpolation,wavelet noise reduction, and normalization of data, all of this data will be inputted into the LSTM network model of different LSTM layers and the number of different hidden neurons in the same layer for training and testing. Comparing the evaluation indicators with the prediction results, it finds the appropriate number of LSTM layers and hidden neurons, and improves the prediction accuracy by about 30%. The test results show that the computational complexity of this model is small and the prediction accuracy is improved. It not only provides a useful reference for predicting stock trend before stock investment, but also helps investors to build a suitable stock investment strategy after further understanding of the actual stock price.
作者 彭燕 刘宇红 张荣芬 PENG Yan;LIU Yuhong;ZHANG Rongfen(College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第11期209-212,共4页 Computer Engineering and Applications
基金 贵州省科技计划项目(No.黔科合平台人才[2016]5707)
关键词 小波降噪 长短期记忆网络(LSTM)层数 隐藏神经元 股价预测 wavelet noise reduction number of Long Short-Term Memory(LSTM)layer hidden neurons stock price forecast
  • 相关文献

参考文献8

二级参考文献42

  • 1徐薇,黄厚宽,秦勇.基于时空数据挖掘的铁路客流预测方法[J].北京交通大学学报,2004,28(5):16-19. 被引量:16
  • 2P C Chang, C H Liu.A TSK type fuzzy rule based system for stock priceprediction [J].Expert .Syst. Appl,2008,34: 135- 144.
  • 3P C Chang, C H Liu: C Y Fan.Data clustering and fuzzy neural network for sales forecasting: a case study in print- ed circuit board industry[J].Knowl. Based Syst,2009,22 : 344 - 355.
  • 4O Cordon, F Herrera, F Hoffmann, L Magdalena.Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases [M].Wodd Scientific,Singapore, 2001.
  • 5O Cordon, F Herrera.A general study on genetic fuzzy sys- tems [C]// J. Periaux,G. Winter, M. Galen, P. Cuesta (Eds.), Genetic Algorithms in Engineering andComputer Science, Wiley, 1995:33 - 57.
  • 6R Hassan, B Nath.Stock market forecasting using hidden markov model: a new approach[C]//5th International Con- ference on Intelligent System Designand Application, Poland, 2005:192 - 196.
  • 7R Hassan.A combination of hidden Markov model and fuzzy model for stock market forecasting[J].Neuroeomput- ing,2009,72:3439 - 3446.
  • 8杨君岐,孙少乾,乐甲.基于Elman网络的股价预测模型及在浦发银行股票预测中的应用[J].陕西科技大学学报(自然科学版),2007,25(6):127-130. 被引量:5
  • 9张立霞,马芳芳,叶德谦.基于支持向量机方法的金融时间序列研究[J].辽宁工业大学学报(自然科学版),2008,28(1):27-30. 被引量:3
  • 10魏宇.沪深300股指期货的波动率预测模型研究[J].管理科学学报,2010,13(2):66-76. 被引量:79

共引文献166

同被引文献529

引证文献77

二级引证文献274

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部