期刊文献+

多线性极大算子在Orlicz空间的弱有界性估计

Weakly bounded estimator for multi-linear maximal operators in Orlicz space
下载PDF
导出
摘要 Orlicz空间是一类较具体的Banach空间,在Banach空间理论和应用的研究中起着非常重要的作用。定义多个单线性分数次极大算子的乘积算子为■,得到■的弱有界性,再利用■控制多线性分数次极大算子,得到多线性分数次极大算子的弱有界性。所得结果扩充了分数次极大算子在Orlicz空间的有界性结论。 Orlicz space is a specific kind of Banach space, which plays an important role in the research of Banach space theory and application. The product operator of multiple linear fractional maximal operators is defined as M α, with its weak boundedness obtained. Then, by using M α to control multi-linear fractional maximal operators, the weak boundedness of multi-linear fractional maximal operators is obtained. The results extend the boundedness of fractional maximal operators in Orlicz space.
作者 张友朋 陶祥兴 ZHANG Youpeng;TAO Xiangxing(School of Sciences,Zhejiang University of Science and Technology,Hangzhou 310023,Zhejiang,China)
出处 《浙江科技学院学报》 CAS 2019年第3期169-174,共6页 Journal of Zhejiang University of Science and Technology
基金 国家自然科学基金项目(11771399 11801509)
关键词 ORLICZ空间 多线性极大算子 有界性 Orlicz space multi-linear maximal operators boundedness
  • 相关文献

参考文献5

二级参考文献32

  • 1薛银川.二元Baskakov-Kantorovic算子的L_p逼近[J].西南民族学院学报(自然科学版),1995,21(1):11-14. 被引量:2
  • 2吴嘎日迪.一类新型Kantorovich算子在Orlicz空间内的逼近性质[J].内蒙古师范大学学报(自然科学汉文版),2006,35(3):253-257. 被引量:27
  • 3Voormolen MH, Mali WP, Lohle PN, et al. Percutaneous vertebroplasty compared with optimal pain medication treatment:short-tenn clinical outcome of patients with subacute or chronic painful osteoporotic vertebral compression fractures. The VERTOS study [ J ]. AJNR Am J Neuroradiol, 2007,28 ( 3 ) :555 - 560.
  • 4Grafakos, L.: On multilinear fractional integrals. Studia Math., 102, 49-56 (1992).
  • 5Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc., 192, 216-274 (1974).
  • 6Kenig,C. E., Stein, E. M.: Multilinear estimates and fractional integration. Math. Res. Left., 6, 1-15 (1999).
  • 7Lerner, A. K., Ombrosi, S., Perez, C., et al.: New maximal functions and multiple weights for the multilinear Calderon-Zygmund theory. Adv. Math., 220, 1222-1264 (2009).
  • 8Perez, C., Pradolini, G., Torres, R. H., et al.: End-point estimates for iterated commutators for multilinear singular integrals, arXiv: 1004.4976v2[math.CA]8 Mar 2011.
  • 9Moen, K.: Weighted inequalities for multilinear fractional integral operators. Collect. Math., 60, 213-238 (2009).
  • 10Chen, X., Xue, Q. Y.: Weighted estimates for a class of multilinear fractional type operators. J. Math. Anal. Appl., 362, 355-373 (2010).

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部