期刊文献+

基于量子人工鱼群和模糊核聚类算法的网络入侵检测模型研究 被引量:6

Research on Network Intrusion Detection Model Based on Quantum Artificial Fish School and Fuzzy Kernel Clustering Algorithm
下载PDF
导出
摘要 针对基于传统模糊C均值聚类的网络入侵检测模型存在分类效果不佳,且容易出现局部极值的问题,提出了一种基于量子人工鱼群的半监督模糊核聚类算法。该算法使用少量的标记数据和大量未知标记数据生成网络入侵检的分类,并通过核距离的方式构建了模糊C均值聚类算法的新目标函数,此外,结合了量子人工鱼群算法来解决模糊核聚类算法的全局最优解问题,适用于并行执行架构。在KDDCup99网络入侵检测数据上的仿真实验结果表明,相比于基于FCM和PSO-FCM的入侵检测模型,以及基于此提出的算法入侵检测模型具有更好的检测率。 Aiming at the problem that the network intrusion detection model based on traditional fuzzy C-means clustering has poor classification effect and the local extremum is easy to occur,the paper proposes a semi-supervised fuzzy kernel clustering algorithm based on quantum artificial fish school optimization.The algorithm uses a small amount of tag data and a large amount of unknown tag data to generate the classification of network intrusion detection,and constructs a new objective function of fuzzy C-means clustering algorithm by means of kernel distance.In addition,it is combined with quantum artificial fish school optimization algorithm to solve the global optimal problem of the fuzzy kernel clustering algorithm,which is applicable to the parallel execution architecture.The simulation results on the KDD Cup 99 network intrusion detection data show that the intrusion detection model based on the proposed algorithm has better detection rate than that based on FCM and PSO-FCM.
作者 李根 LI Gen(Department of Computer Application Technology,Guangdong College of Business and Technology,Zhaoqing 526020,China)
出处 《软件工程》 2019年第6期33-37,共5页 Software Engineering
关键词 网络安全 入侵检测 量子人工鱼群 半监督学习 C均值聚类 network security intrusion detection quantum artificial fish school semi-supervised learning C-means clustering
  • 相关文献

参考文献3

二级参考文献26

  • 1DENNING D. E, An Intrusion Detection Model[J]. IEEE Transaction on Soi'tware Engineering, 2010,13 (2), 222- 232.
  • 2Durga Prasad Muni, Nikhil R Pal, Jyotirmoy Das. Genetic programming for simultaneous feature selection and classifier design[J~. IEEE Transactions on Systems, Man, and Cyber- netics Part B, February, 2009,36(1) ~106- 117.
  • 3KENNEDY J, EBERHART R C. Particle swarm optimiza- tion[C]. Proc of IEEE International Conference on Neural Networks, USA: IEEE Press, 2005: 1942-1948.
  • 4MONTEMANNI R, SMITH DH, GAMBARDELLA LM. Ant colony systems for large sequential ordering problems EC~. Proceedings of the 2007 IEEE Swarm Intelligence Sym- posium, 2012,12.. 478-482.
  • 5Cheng-Lung Huang, Chieh-Jen Wang. A GA-based feature selection and parameters optimization for support vector ma- chines [J]. Expert Systems with Applications, 2011, 31(2) : 231-240.
  • 6Xiaowei Yang,Guangquan Zhang,Jie Lu,Jun Ma.A Kernel Fuzzy c-Means Clustering-Based Fuzzy Support Vector Machine Algorithm for Classification Problems With Outliers or Noises. IEEE Transactions on Fuzzy Systems . 2011
  • 7E.A. Zanaty,Ashraf Afifi.SUPPORT VECTOR MACHINES (SVMs) WITH UNIVERSAL KERNELS[J]. Applied Artificial Intelligence . 2011 (7)
  • 8Xiang-Yang Wang,Ting Wang,Juan Bu.Color image segmentation using pixel wise support vector machine classification[J]. Pattern Recognition . 2010 (4)
  • 9Chen, Songcan,Zhang, Daoqiang.Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems Man and Cybernetics . 2004
  • 10Chen, Long,Chen, C. L. Philip,Lu, Mingzhu.A multiple-kernel fuzzy C-means algorithm for image segmentation. IEEE Transactions on Systems Man and Cybernetics . 2011

共引文献61

同被引文献81

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部