期刊文献+

大规模无线传感器网络异构数据交换方法仿真 被引量:8

Simulation of Heterogeneous Data Exchange Method for Large Scale Wireless Sensor Networks
下载PDF
导出
摘要 为解决当前网络数据交换方法存在的安全性差和能耗高问题,提出基于OCHS的大规模无线传感器网络异构数据交换方法。根据传感器中存在的时间关联性产生候选异常数据点,依据空间关联性过滤候选异常数据点,获取局部异常数据点。将传感器中全部局部异常数据点集合融合至汇聚节点,得到全局异常数据点,引入卡尔曼滤波器过滤掉所有异常数据点,完成数据交换前预处理。利用OCHS算法选取数据交换簇首节点时,结合数据预处理结果,在考虑节点数据存在的周期性基础上,依据各异构节点的初始能量和传感器节点分布密度等因素,通过竞争的方式选择最优交换簇首集合,即最佳数据交换簇集合。传感器网络中各待交换异构数据根据勾股定理选取能耗最小的路径加入各数据簇,完成数据交换。实验结果表明,所提方法安全系数高、数据交换能耗低,整体性能优于当前相关方法。该方法具有较强地实用性和鲁棒性,可为数据处理提供一定理论依据。 At present,exchange method of network data has defects,such as poor security and higher energy consumption.In order to solve the defects,this research proposes a new exchange method of heterogeneous data of large-scale wireless sensor networks based on OCHS.Firstly,the research generated candidate abnormal data point according to time relevance existing in the sensor,then according to the relevance filtered the abnormal data points and acquired local abnormal data points.The research fused set of all local abnormal data points in the sensor into sink node and obtained global abnormal data points.The research introduced Kalman filter to filter all abnormal data points and completed pretreatment before data exchange.Integrated with results of the pretreatment,according to primary energy of each heterogeneous node and distribution density of sensor node,the research selected set of optimal exchange cluster head,namely set of optimal data exchange cluster,via competition manner based on periodicity of node data during selecting cluster head node of data exchange via OCHS algorithm.According to the Pythagorean Theorem,the research selected path with the smallest energy consumption in each heterogeneous data to exchange to add into each date cluster.Thus,we completed the data exchange.Simulation results show that the proposed method has high security coefficient and low energy consumption of data exchange.Its overall performance is superior to current methods.The proposed method has better practicability and robustness.
作者 曹曼曼 汪勉 CAO Man-man;WANG Mian(Department of Computer Science,Jining University,Qufu Shandong 273155,China;Institute of Scientific and Technical Information of Jining,Jining Shandong 272000,China)
出处 《计算机仿真》 北大核心 2019年第5期345-348,共4页 Computer Simulation
关键词 大规模 无线传感器网络 异构数据 交换 Large scale Wireless sensor network Heterogeneous data Exchange
  • 相关文献

参考文献10

二级参考文献85

  • 1蔡普,林慕义,郑鑫,闻健.车辆电液动力制动系统的联合仿真与实验[J].系统仿真学报,2015,27(4):893-899. 被引量:4
  • 2刘崇茹,孙宏斌,张伯明,王志南.公共信息模型拆分与合并应用研究[J].电力系统自动化,2004,28(12):51-55. 被引量:63
  • 3李晓东,杨扬,郭文彩.基于企业服务总线的数据共享与交换平台[J].计算机工程,2006,32(21):217-219. 被引量:79
  • 4王军,黄传华.Dom4j在数据交换中的应用[J].计算机与现代化,2007(5):98-99. 被引量:6
  • 5Li Tingli,Liu Yang,Tian Ye,et al.A storage solution for massive IoT data based on NoSQL.Proceedings of the 2012 IEEE International Conference on Internet of Things[C].USA:IEEE,2012.50-57.
  • 6Zhang Yin,Han Weili,Wang Wei,et al.Optimizing the storage of massive electronic pedigrees in HDFS.Proceedings of the 3rd International Conference on the Internet of Things[C].USA:IEEE,2012.68-75.
  • 7Zhang Guigang,Li Chao,Zhang Yong,et al.SemanMedical:a kind of semantic medical monitoring system model based on the IoT sensors.Proceedings of the IEEE 14th International Conference on e-Health Networking,Applications and Services[C].USA:IEEE,2012.238-243.
  • 8L Paul,M Dirk,B Andre.HashFS:applying hashing to optimize file systems for small file reads.Proceedings of the International Workshop on Storage Network Architecture and Parallel I/Os[C].USA:IEEE,2010.33-42.
  • 9Zhang Yang and Liu Dan.Improving the efficiency of storing for small files in HDFS.Proceedings of the International Conference on Computer Science & Service System[C].USA:IEEE,2012.2239-2242.
  • 10Yang Hui,Qin Yong,Feng Gefei,et al.Online monitoring of geological CO2 storage and leakage based on wireless sensor networks[J].IEEE Sensors Journal,2013,13(2):556-562.

共引文献114

同被引文献94

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部