期刊文献+

基于主成分分析方法的海量地震数据属性降维优化 被引量:5

Attribute Reduction and Optimization for Massive Seismic Data Based on Principal Component Analysis
下载PDF
导出
摘要 针对传统的地震数据属性降维优化方法所选取的地震数据属性特征贡献率低导致降维过程计算量大、CPU占用率高等问题,提出一种基于主成分分析的海量地震数据属性降维优化方法。首先根据地震样本特征建立地震数据特征矩阵,把矩阵中的特征进行聚类,运用降序法排列聚类结果,选取前几项数据作为地震数据属性特征选取结果,对其结果评估分类信息量;通过特征积分准则(FSC)修正分类信息量,获取海量地震数据属性特征节点;运用主成分分析方法对地震数据属性特征节点主成分添加标签,确定Fisher判别分析与PCA可变动选择不确定关系,建立半监督降维的全局最优化形式,运用特征值分解计算降维结果,克服海量地震数据属性降维过程中的过拟合问题,融合主成分分析算法与Fisher判别分析算法实现海量地震数据属性降维优化。实验结果证明,所提方法选取的属性特征精度及贡献率较高,降维过程中CPU占用率较低。 In view of the problems associated with the traditional optimization method for seismic data attribute reduction, i.e., the large amount of computation required in the reduction process and the high CPU occupancy rate, in this paper, we propose an attribute reduction and optimization method for massive seismic data based on principal component analysis (PCA). First, we establish a feature matrix of the seismic data based on the characteristics of seismic samples. The features in the matrix are then clustered and arranged in descending order. We then select the first few data as the seismic data attribute feature results and evaluate the classification information of these results. Next, the classification information is modified using the feature integral criterion to obtain the attribute feature nodes of the massive seismic data. We use PCA to label the principal components of the attribute nodes of the seismic data and establish a global optimization of the semi-supervised dimensionality reduction. The dimensionality reduction results are calculated by eigenvalue decomposition, we solved the problem of over-fitting in the attribute reduction process of massive seismic data, and realized the optimization of the attribute reduction of massive seismic data by combining the PCA algorithm with Fisher discriminant analysis. The experimental results show that the proposed method has a high accuracy and contribution rate of attribute feature selection, and the CPU occupation rate is low during the dimensionality reduction process.
作者 李海霞 吴苏怡 LI Haixia;WU Suyi(College of Humanities,Wuhan Vocational College of Software and Engineering,Wuhan 430079,Hubei,China;School of Mathematics and Statistics,Huazhong Normal University,Wuhan 430000,Hubei,China;Northeast Yucai School,Shenyang 110179,Liaoning,China)
出处 《地震工程学报》 CSCD 北大核心 2019年第3期757-762,共6页 China Earthquake Engineering Journal
基金 国家自然科学基金(4004-61772223) 武汉市教育局课题(2017118)
关键词 地震数据特征矩阵 降序法 PCA算法 Fisher判别分析算法 feature matrix of seismic data descending method PCA algorithm Fisher discriminant analysis algorithm
  • 相关文献

参考文献10

二级参考文献63

共引文献135

同被引文献50

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部