摘要
基于空气载能辐射空调房间内的稳态关闭门窗、非稳态开门及非稳态开窗3种工况的试验测量,分别建立3种工况的CFD(Computational Fluid Dynamics)模型,研究稳态和非稳态工况下空气载能辐射空调的热舒适性和结露特性.基于对非稳态开门窗工况的热力学分析,提出由温度协同方程、含湿量协同方程、PMV (Predicted Mean Vote)协同方程和空调能耗协同方程表示的混合通风协同运行模型.经过试验验证的CFD模型模拟结果显示,空气载能辐射空调在稳态和非稳态工况下室内人体头部与脚踝平面的垂直温差小于0.6 ℃,人体活动区域内的空气速度约为0.1 m/s,稳态和非稳态工况中辐射孔板下表面分别存在厚度约为12 cm和6~8 cm的具有良好防结露效果的低温近壁边界区.将空气载能辐射空调开门窗工况试验结果应用于混合通风协同运行模型,分析了空调送风量和门窗开度对PMV和空调能耗的协同影响,提出了混合通风协同评价系数,得到不同门窗开度对应的最优空调送风档位设置建议.
Experiments of three cases, such as steady operation, unsteady operation with opened door, and unsteady operation with opened window, were carried out in a residential room having air carrying energy radiant air-conditioning system. Three Computational Fluid Dynamics (CFD) models were established based on the experimental results to study the indoor thermal environment and condensation risk of these three cases. The synergistic operation model described by the temperature synergistic formula, relative humidity synergistic formula, PMV synergistic formula, and energy consumption synergistic formula was proposed based on the thermodynamic analysis. The verified CFD model shows that the vertical temperature gradient between the human head and ankle height is less than 0.6 ℃ and the air velocity in the occupied zone is about 0.1 m/s. There is a boundary zone with low condensation risk under the radiant orifice plate of both steady and unsteady cases for about 12 cm and 6~8 cm, respectively. The synergistic influence analysis of air supply and opening degree on PMV and energy consumption was conducted based on the unsteady experimental results. The synergistic evaluation index of mixing ventilation was presented, offering optimal advice on air supplying settings for different opening degrees of outside door and window.
作者
龚光彩
刘佳
GONG Guangcai;LIU Jia(College of Civil Engineering,Hunan University,Changsha 410082,China)
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第5期148-156,共9页
Journal of Hunan University:Natural Sciences
基金
国家自然科学基金资助项目(51378186)
国家科技支撑计划项目(2015BAJ03B00)~~
关键词
空气载能
辐射空调
CFD模拟
热力学分析
混合通风
协同运行模型
air carrying energy
radiant air conditioning
CFD simulation
thermodynamic analysis
mixing ventilation
synergistic operation model