摘要
随着电气化铁路、航天航空、军事装备等领域的发展,对载流摩擦磨损理论及重点技术的研究提出了迫切需求。如国产高铁“和谐号”和“复兴号”的最高运行速度均已突破400 km/h,但大幅提速会导致弓网系统载流量倍增、离线率提高,从而严重影响弓网系统寿命;电磁轨道炮作为一种新型概念武器,是全球军事研究的热点,在高速、大载流的工况下也会产生高速刨削、高速摩擦磨损以及转捩与电弧烧蚀等失效问题。因此,深入系统地研究载流摩擦学有利于解决实际中存在的问题,特别是对研制新型耐磨、耐烧蚀材料具有重要意义。载流摩擦磨损作为电接触系统与摩擦系统共同耦合作用的结果,早在20世纪20年代就有国外学者开始进行相关研究。初期实验多以铜或铜合金为摩擦副材料,探究电流、载荷、滑动速度、电弧对载流摩擦磨损性能的影响规律是载流摩擦磨损研究的典型工作之一。现阶段的研究内容已由传统的摩擦系数、磨损率、表面形貌逐步发展到接触的电阻变化、表面温升的影响、电弧侵蚀的定量分析等方面。近几年,基于前期大量实验数据积累,研究人员发现载流摩擦副的表面温升和磨损量受电流、载荷、滑动速度影响,并存在函数关系。国内外学者已成功采用ANSYS、COMSOL等有限元分析软件对弓网系统、电磁轨道炮温度场进行了仿真预测,有效实现了摩擦热、焦耳热与电弧热的耦合,为延长设备使用寿命和解决失效问题提供了科学依据。同时也通过数理统计方法建立了磨损量预测模型,可通过预测函数更为系统地研究载流摩擦磨损规律。随着研究手段的丰富,研究人员也开始结合磨痕表面、亚表面和磨屑形貌成分深入地研究了载流摩擦磨损机理,并在此基础上研制了满足载流摩擦工况需求的碳基复合材料、梯度自润滑材料等。本文综述了载流摩擦磨损的基本特征,阐述了工作参数对载流摩擦磨损性能的影响,重点对载流摩擦磨损中电弧产生机理及影响因素进行了分析,并对载流摩擦磨损温度场及磨损量的仿真预测研究成果进行了归纳,总结了载流摩擦中的摩擦磨损机理和减摩抑弧方面的研究进展。最后,对目前载流摩擦研究中存在的问题进行了梳理并提出了改进方向。
With the development of electrified railway, space flight and aviation, military equipment and other fields, there is an urgent need for the research of current-carrying friction and wear theory and key technologies. For example, the maximum running speeds of the domestic high-speed railway “China Railway High-speed” and “Fuxing bullet trains” have exceeded 400 km/h, but a large increase in the speed will lead to a doubling of the current-carrying capacity of the pantograph-catenary system and an increase in the contact loss rate, thus seriously affecting the life of the pantograph-catenary system. As a new concept weapon, the electromagnetic orbital gun is a hotspot in global military research, and high-speed planing and high speed friction and wear, transition and arc ablation will also occur under high speed and high current carrying working conditions. Therefore, a thorough and systematic study of current-carrying tribology is conducive to solving practical problems, especially of great significance for the development of new wear-resistant and ablative materials. Current-carrying friction and wear, as a result of the mutual coupling between electrical contact system and friction system, was studied by foreign scholars as early as the 1920s. In the initial experiments, copper or copper alloys were used as friction auxiliary materials. It is one of the typical work of current-carrying friction and wear research to explore the influence of current, load, sliding speed and arc on current-carrying friction and wear performance. At present, the research content has gradually developed from the traditional friction coefficient, wear rate and surface morphology to the contact resistance change, the influence of surface temperature rise, the quantitative analysis of arc erosion and so on. In recent years, based on the accumulation of a large number of experimental data on the previous stage, researchers have found that the surface temperature rise and wear extent of current-carrying friction auxiliary materials are affected by current, load and sliding speed, and there is a functional relationship between them. Scholars at home and abroad have successfully used finite element analysis software such as ANSYS and COMSOL to simulate and predict the temperature field of pantograph-catenary system and electromagnetic gun track, effectively realizing the coupling of friction heat, Joule heat and arc heat, providing a scientific basis for prolonging the service life of equipment and solving the practical problems. At the same time, the wear extent prediction model is established by mathematical statistics method, and the law of current-carrying friction and wear can be studied more systematically by the prediction function. With the enrichment of research methods, researchers began to study the mechanism of current-carrying friction and wear in depth by combining the morphological composition of surface, subsurface and abrasive dust. On this basis, carbon-based composites and gradient self-lubricating materials were developed to meet the needs of current-carrying friction wor- king conditions. This paper summarizes the basic characteristics of current-carrying friction and wear, expounds the influence of working parameters on current-carrying friction and wear performance, focuses on the analysis of arc generation mechanism and influencing factors in current-carrying friction and wear, summarizes the research results of simulation and prediction of temperature field and wear extent of current-carrying friction and wear, and the research progress of friction and wear mechanism, antifriction and arc suppression in current-carrying friction is summarized. Finally, the exis- ting problems in current-carrying friction research are sorted out and the improvement direction is put forward.
作者
惠阳
刘贵民
闫涛
杜林飞
周雳
HUI Yang;LIU Guimin;YAN Tao;DU Linfei;ZHOU Li(Department of Equipment Maintenance and Remanufacturing Engineering,Academy of Army Armored Forces,Beijing 100072)
出处
《材料导报》
EI
CAS
CSCD
北大核心
2019年第13期2272-2280,共9页
Materials Reports
基金
北京市自然科学基金(2152031)
武器装备预研基金项目:重点实验室基金(9140C8502010C85)~~
关键词
载流摩擦磨损
电弧
摩擦磨损机理
仿真预测
减摩抑弧
current-carrying friction wear
electric arc
friction wear mechanism
predictive simulation
antifriction and arc-suppressing